Jewelry's missing "jewel": containment, doublets and gaps as probes into countability and the count/mass distinction Luis Miguel Toquero-Pérez Georgetown University Department of Spanish & Portuguese lt758@georgetown.edu #### **Abstract** Nouns like *jewelry*, *kitchenware* or *furniture* are challenging for any theory of the count/mass distinction because while they are mass, they share with count nouns the property of being countable, i.e. measurement along a cardinality scale. The traditional view (Chierchia 1998a, 2010; Bale and Barner 2009) rests on the idea that these nouns are lexically specified or marked plural but enter the syntax into a mass frame thus preventing subsequent count properties such as numeral modification or overt plural marking. However, the root morphemes that participate in this class of mass nouns also participate in the class of count nouns giving rise to doublets: *jewel{-s/-ery}*, *kitchen{-s/-ware}*. Using data from English and Spanish, I show that object mass nouns are built on top of the same base (i.e. root+n) as count nouns, and argue that object mass marking and number-marking are in overlapping distribution. I provide a theory of the count/mass distinction that explains these properties and that can be extended to explain the variation reported within the object mass class. At a more general level, this proposal illuminates our understanding of the grammatical encoding of the count/mass distinction, countability and the locus of cross-linguistic variation. #### 1 Introduction Languages may manifest morpho-syntactic differences in the distribution of nominal expressions. For example, expressions such as *chair*, *jewel* or *kitchen* can appear in the contexts in (1) whereas those expressions such as *blood* or *mud* in (2) cannot. - (1) a. Johnny saw every { chair/ jewel/ kitchen }... - b. and Moira only saw this one. one = { chair/ jewel/ kitchen } - (2) a. * Johnny saw every { blood/ mud}... - b. * and Moira only saw this one. intended: *one* = { blood/ mud } The expressions in (1) can occur with the universal determiner *every*, and serve as the antecedent for the pronominal form *one*. However, those expressions in (2) are ungrammatical with said determiner and cannot be the antecedent of *one* (e.g. Bale and Gillon 2020). The nominal expressions in (1) are generally referred to as count NPs and those in (2) are generally referred to as mass NPs. Mass NPs, like those in (2), are be unmarked (for number), but there is a subclass of mass NPs that must be plural-marked and lacks an unmarked counterpart. These include *dregs* or *fumes*, e.g. (3). - (3) a. { *This/ These/ Those } dregs - b. * Every dreg(-s) - c. * These dregs, and those ones The determiners must agree in the plural form, e.g. (3a); yet they are ungrammatical with *every* in (3b) and cannot be understood as antecedents for *one* in (3c). In terms of the semantic properties, what largely distinguishes between the two classes of nouns is the asymmetry in (4), as observed by Bale and Barner (2009). For instance, (plural) count NPs like *jewel* can be measured in terms of cardinality under comparatives, while unmarked and plural mass NPs like *blood* or *dregs* cannot.¹ (4) a. Johnny saw more jewels than Moira did. CARDINALITY, #VOLUME b. Johnny saw more blood than Moira did. #CARDINALITY, VOLUME c. Johnny saw more dregs than Moira did. #CARDINALITY, VOLUME I will refer to the expressions that must be measured in terms of cardinality as 'countable'. In contrast, I will use the term 'non-countable' for those expressions that cannot be measured in terms of cardinality (i.e. the individuals they denote cannot be counted and must be measured in terms of a different dimension). Expressions such as *furniture*, *jewelry* or *kitchenware* constitute an interesting case. They are mass NPs as illustrated by their ungrammaticality with *every* and as antecedents for *one*, in (5); but, unlike the other mass nouns, they are also countable: *more jewelry* in (6) is understood as 'larger number of (individual) pieces of jewelry'. (5) a. * Johnny saw every jewelry... b. * and Moira only saw this one. intended: *one* = jewelry (6) Johnny saw more jewelry than Moira did. CARDINALITY, #VOLUME These NPs that are both countable and mass are typically known as 'object' mass nouns.² It is this hybridity in their properties that has made object mass nouns a challenging class for theories of the count/mass distinction. The traditional view, going back to Chierchia (1998a), and subsequent work by Chierchia (2010); Bale and Barner (2009); Cowper and Hall (2009, 2012, 2014); Rothstein (2010); Smith (2021), is based on the following assumptions: (i) object mass nouns are listed in the lexicon with the same underlying form that they surface with, e.g. (7a); and (ii) these forms are lexically plural, which ensures a countable denotation, but enter the syntax in a mass frame as in (7b).³ This mass syntax prevents subsequent count properties including, but not limited to, the illustrated compatibility with certain count determiners such as *every*. ¹Singular count NPs are not acceptable with comparative expressions due to independent semantic factors, i.e. non-cumulativity (e.g. Quine 1960; Cheng 1973; Link 1983; Bach 1986b; Krifka 1989; Schwarzschild 2006), but they can still be measured in terms of cardinality when modified by numerals: *one jewel*. In fact, in many languages, numerals require that the NP be singular (e.g. Ionin and Matushansky 2018; Pancheva 2023). ²The label 'object' makes reference to the idea that these expressions, like count nouns, denote object-concepts as opposed to substance-concepts, in the sense of Soja et al. (1991): discrete individuals with clearly distinguishable boundaries. Given their hybridity, they are also referred to as 'fake' mass nouns (e.g. Chierchia 1998a,b, 2021). ³The label *mass* in (7b) is used purely pretheoretically. The trees are meant to reflect the different implementations of this idea in the works cited in the text: [PL] acts as a modifier of the constituent that contains the root (e.g. Cowper and Hall 2009, 2012, 2014) or the root comes specified as plural from the lexicon (e.g. Chierchia 1998a, 2010; Bale and Barner 2009). (7) a. $\sqrt{\text{JEWELRY}}$ is mapped to the surface form *jewelry* $\sqrt{\text{FURNITURE}}$ is mapped to the surface form *furniture* However, the traditional view misses an important empirical generalization regarding the classes of roots found in object mass NPs: the root morphemes found in the class of object mass NPs are coextensive with those found in the class of count NPs, giving rise to doublets, e.g. (8) from English. (8) a. jewel-s b. word-s c. table-s d. carpet-s jewel-ry word-age table-ware carpet-ing The examples in (8) illustrate that the same $\sqrt{\text{ROOT}}$ is used for both the count noun form and for the object mass counterpart. Where the two forms differ is in the subsequent morphological marking on the shared nominalized root: count noun forms are marked for number, realized as -s if plural but null if singular; object mass nouns are 'object'-marked (e.g. -age, -ery, -ware) where one would have expected the number morpheme to surface. This morpho-syntactic complexity is not limited to English, but it is also reported for Dutch (De Belder 2013), and French and Hebrew (Cohen 2020). Relatedly, despite sharing the same nominalized root (e.g. *jewel-, carpet-*), number-marking and object-marking seem to have a different semantic effect on the constituent they attach: the plural-marked form of (8a) is understood as a plurality of individual jewels, whereas the object-marked form is understood as a collection of jewel-related items. What is more, some object mass nouns may be understood in two different ways (Lieber 2004, 2016; Alexiadou 2015; Cohen 2020): i) a collective understanding, and ii) an eventive one, i.e. 'the result of doing X or being an X'. This is the case of *carpeting*, for example, illustrated in (9). - (9) carpeting - a. a collection of carpet-looking items. (collective) b. the result of covering a surface with a carpet. (eventive) Cross-linguistically, languages might differ in the ways that they instantiate this class of nouns. In fact, Chierchia (2010, 2021) reports that there are languages that have a count/mass distinction but lack an object mass subclass. Under the traditional view, these cross-linguistic differences must be lexical: where languages differ is in the set of roots that are part of their inventory. While this might not be a fatal argument by itself for the traditional view, there are languages where such variation cannot be deemed lexical. For example, the counterpart of this subclass of nouns in Czech is not plural-marked, but collective-marked; and it allows (complex) numeral modification, as opposed to English (Grimm and Docekal 2021). I consider that these observations present strong challenges for the traditional view and that an alternative explanation is in order. In particular, we must explain why object mass nouns have a large degree of overlap with count nouns, but have a mass distribution otherwise. In addition, we must explain the variation we observe across languages, e.g. impossibility of numeral modification in some (English) but not in others (Czech). In this paper, I argue that object mass nouns are morpho-syntactically complex and fall under the umbrella of productive nominalization processes (e.g. Lieber 2004, 2016; De Belder 2013; Alexiadou 2015; Cohen 2020). More specifically, I will motivate the novel generalization in (10), on the basis of English and Spanish data. #### (10) Countable Base Generalization Object mass nouns are built on top of the same countable base (e.g. root+categorizer) as count nouns. Based on (10), I propose the hypothesis in (11). In a nutshell, like Bobaljik's (2012, p.4) original formulation of containment, the central claim of this hypothesis is as
follows: just like only (12a) is a possible representation of count nouns, so is (13a) for object mass nouns; but (13b) is not. (11) The representation of object mass (and count nouns) properly contains a countable base. A conclusion that we extract from the generalization and the schematic underlying representations in (12a) and (13a) is that sg/pl and object mass morphemes occupy the same position in the structure. This leads to hypothesizing that object mass-marking and number-marking are in overlapping distribution. That is, both terminals require that their complement is a countable base. This hypothesis would explain why object mass nouns are never number-marked; and it is consistent with the idea that count NPs are just a subset of the NPs that are countable. The goal of the paper is to argue that the characteristic properties of object mass nouns, as both mass and countable expressions, follow from the containment hypothesis in (11). However, in order to be able to do so, we must first describe the properties of the other relevant subclasses of (mass and count) nouns and develop a general theory of the count/mass distinction. This will set the baseline for the object mass noun cases under investigation. In particular, I argue that the object mass piece in (13a) is not [pl], but a [coll(ective)] feature (e.g. De Belder 2013; Alexiadou 2015; Lieber 2016) which, (at least) in languages like English and Spanish, is located in an outer categorizing head. I will also argue that the location of this feature may be subject to variation, very much like [pl] (Ghomeshi 2003; Acquaviva 2008; Wiltschko 2008, 2021; Alexiadou 2011; Kramer 2016). It is this difference that distinguishes English/Spanish-type languages from Czech. At a more general level, this investigation raises questions about the encoding of the count-mass distinction and countability. In particular, it will shed light on the following architectural issues: what makes an NP count as opposed to mass? What makes countable NPs, both count and mass, form a natural class? What determines variation? ## 2 Data management Most of the data in this article come from English and Spanish. Unless otherwise noted in the text, uncited data report the judgments of 14 adult native English speakers and 18 adult native Spanish speakers, including the author. All the native English speakers, five of whom were linguists, spoke different varieties of North American English listed here: Canada (x2), California (x7), Nebraska, New Jersey, Oklahoma, Ohio and Wisconsin. There was a total of 6 women and 8 men; all had a college degree and 7/14 held PhDs. The average age of the group was 38 years old (30-48). The native Spanish speakers, none of whom were linguists except the author, spoke different varieties of Iberian and American Spanishes. The Iberian Spanishes included Córdoba (x2), Madrid (x3), Tarragona and Valladolid (x7). The American Spanishes included Mexican (Mexico City, Santiago and Mexicali, x3) and Peruvian (Lima, x2). There was a total of 9 women and 9 men; all of them had a college degree; only 5/18 had a post-BA education, and 4 of them held PhDs. The average age of the group was 44 years old (30-67). Data elicitations, carried out both in-person and over email, conformed to the general principles for conducting fieldwork (Matthewson 2004; Bochnak and Matthewson 2015, 2020; Kibrik 2017; Gribanova 2022). The main method of elicitation consisted of grammaticality and felicity judgments. These judgment tasks typically involved a binary evaluation (acceptable vs. not acceptable, or acceptable in context vs. not acceptable in context). For sentences that require a judgement about interpretation verbal or written presentation of the relevant discourse context was provided. Evaluation on a Likert scale from 1 to 7 was used when more fine-grained judgments were needed. Data and insights from other languages come from a selection of documents including published journal articles, conference proceedings, edited volumes and descriptive grammars. The sources for these are appropriately cited in text or next to the relevant example(s). #### 3 Determining the different classes #### 3.1 Diagnostics for the count/mass distinction It has been generally observed that there are important morpho-syntactic asymmetries between the class of count and the class of mass nouns. The crucial asymmetries to diagnose whether a noun is count or mass are listed in (14) (see Pelletier 1975; Bunt 1979, 1985; Doetjes 1997, 2021; Chierchia 1998a, 2010, 2021; Deal 2017, among others). Nouns that allow all these properties are considered count while those that do not allow any of these are considered mass.⁴ - (14) a. **Number marking:** Does the noun make a singular/plural distinction? - b. **Modification:** Can the noun be modified by cardinal numerals? - c. **Determiners:** Can the noun occur with certain determiners (e.g. every, several)? As the examples in (15) show, there is a difference between NPs like *jewel* and *blood* when it comes to number-marking: only the former have a singular/plural distinction.⁵ NPs like *jewelry* pattern with *blood* ⁴An additional one that I will not be discussing is concerned with ellipsis options, including *one*-substitution. For details, see Bloomfield (1933); Harley (2005); Bale and Gillon (2020); Toquero-Pérez (2024). ⁵Some expressions like *water*, *tea*, *wine*, whose roots are generally found in mass syntactic contexts, may be 'shifted' into a count form. In such an environment, these nouns have a singular/plural distinction and can be modified by cardinal numerals, like ordinary notional count nouns. When this happens as in (i), however, they are understood as a container or a type, and not as a substance. I take this to be the result of imposing a count syntax on the relevant root (Borer 2005a; Mathieu 2012; Deal in this respect. Plural mass nouns like *fumes* have a plural-marked form but lack an unmarked counterpart. These pattern are replicated in (16) for Spanish.⁶ - (15) a. Johnny saw $\{ this jewel/these jewel-s \}$ - b. Johnny saw { this blood/*these blood-s } - c. Johnny saw { this jewelry/ *these jewelri-es } - d. Johnny saw { *this fume/ these fumes } - (16) a. Johnny vio { esta joya/ esta-s joya-s } = (15a) Johnny saw this.F jewel this.F-pL jewel-pL - b. Johnny vio { esta sangre/*esta-s sangre-s } = (15b) Johnny saw this.F blood this.F-PL blood-PL - c. Johnny vio { esta joyería/ *esta-s joyería-s } = (15c) Johnny saw this.f jewelry this.f-pl jewelry-pl - d. Johnny vio { *este vívere/ esto-s vívere-s }Johnny saw this.m provision this.m-pl provision-pl'Johnny saw { *this provision/ these provisions } A note is in order here. Number-marking is not restricted to object mass nouns ending in *-ery*. Additional examples are given in (17). - (17) a. This furniture, This footwear, This equipment *These furniture-s, *These footwear-s, *These equipment-s - b. E1mobiliario, follaje, el profesorado el the.м furniture the.м foliage the.м faculty *Lo-s mobiliario-s. *lo-s follaje-s, *lo-s profesorado-s the.M-PL furniture-PL the.m-pl foliage-pl the.m-pl faculty-pl 2017). Thus, in this regard they are no different from NPs like *jewel(s)*. (i) Johnny ordered {these wines/ one wine} for the table. An anonymous reviewer wonders whether the same container or type understanding is available for other notional mass nouns like *blood* or *mud*. The answer for English and Spanish seems to be negative (cp. Nez Perce or Yudja). For example, even those speakers in the medical field seem to reject (15b) and (ii) as grammatical. (ii) [A patient has lost a lot of blood and needs a large transfusion but bags only hold 500ml each] ??/* Bring me { all the bloods/ every blood } in the fridge. ⁶I am not claiming that having a particular exponent is determining evidence for a nominal expression to belong to the class of object mass nouns. To determine whether they do, one must consider the syntactic environment in which the expressions occur. For instance, *-ment* in *several development-s* cannot be an object mass exponent given the presence of plural-marking and the plural-count determiner *several*. Similarly, nouns ending in *-ería* '-ery' in Spanish can have a count interpretation when understood as a location. For example, *joyería* in (iii) picks out the store where jewelry is sold. Given these syntactic differences, we can assume that the underlying structures must be different from the ones involved in object mass nouns, despite the fact that the same vocabulary item *-ment* or *-ería* is inserted (De Belder 2013; Lieber 2016). (iii) { La joyería/ la-s (dos) joyería-s} de la calle Serrano de Madrid the.F jewelry the.F-PL two jewelry-PL of the street Serrano of Madrid 'The (two) jewelry store(s) in Calle Serrano in Madrid' Besides, there seems to be a correlation (at least in both languages) between the availability of number-marking on the noun and the possibility of cardinal numeral modification. That is, only the NPs that make a singular/plural distinction can be modified by cardinal numerals. This is illustrated in (18) for English and (19) for Spanish. In both languages, numerals higher than '1' require the noun to be plural-marked. ``` Johnny saw { one jewel/ two jewel-s } (18) b. * Johnny saw { one blood/ two blood-s } c. * Johnny saw { one jewelry/ two jewelri-es } d. * Johnny saw { one fume(s)/ two fume-s } (19) Johnny vio { una joya/ dos joya-s } = (18a) Johnny saw one. F jewel two jewel-PL b. * Johnny vio { una sangre/ dos sangre-s } = (18b) Johnny saw one. F blood two blood-PL c. * Johnny vio { una joyería/ dos joyería-s } = (18c) Johnny saw this.f jewelry two jewelry-pl d. * Johnny vio { un vívere(s)/ dos vívere-s Johnny saw one.m provision two provision-PL 'Johnny saw { one provision/ two provisions } ``` The last distributional difference that I will describe is related to the choice of determiner. Some determiners are sensitive to whether the noun
is count (and singular-marked or plural-marked) as opposed to mass (e.g. Chierchia 1998a, 2021; Borer 2005a; Gillon 2012; Cowper and Hall 2014; Bale 2016; Bale and Gillon 2020). English *each* and *every* are only compatible with singular count nouns, e.g. (20), whereas others such as *several* are only compatible with plural count nouns, e.g. (21). ``` (20) a. Johnny saw { each/ every } jewel. b. * Johnny saw { each/ every } jewels. c. * Johnny saw { each/ every } blood. d. * Johnny saw { each/ every } jewelry. (21) a. * Johnny saw several jewel. b. Johnny saw several jewel-s. c. * Johnny saw several blood. d. * Johnny saw several jewelry. ``` For *several* it is not enough that the noun is plural-marked, it must also be count. This is supported by the data point in (22): a plural mass noun like *fumes* or *dregs*, which triggers plural agreement on the determiner as in (3a), is ungrammatical with *several*. (22) * Johnny saw several fume-s. There are also determiners like *which* that seem to require the noun to be count, regardless of number-marking. This is shown in (23).⁷ ⁷An anonymous review reports that (23c) is not ungrammatical for them. Thus, the '?/*' marker. None of the English speakers consulted for this research accepted cases like (23c). In fact, these speakers were also consistent with their judgments when *which* introduced a relative clause, e.g. (iv), and appeared in sluicing or ellipsis contexts, e.g. (v). ⁽iv) a. * John talked about the { jewelry/ furniture/ footwear } which was expensive. - (23) a. Which jewel(s) did Johnny see? - b. * Which {blood/ dregs} did Johnny see? - c. ?/* Which {jewelry/ furniture} did Johnny see? These types of determiners are also observed in Spanish: cada 'each' in (24) is only compatible with singular count nouns; vari-o/a-s 'several-M/F-PL' in (25) is only compatible with plural count nouns; and indefinite algún 'some/a few' in (26) is compatible with count nouns, regardless of their number-marking.^{8,9} - (24) a. Johnny vio cada joya. Johnny saw each jewel - b. * Johnny vio cada joya-s Johnny saw each jewel-pl - c. * Johnny vio cada sangre Johnny saw each blood - d. * Johnny vio cada joyeríaJohnny saw each jewelry - e. * Johnny vio cada vívere-s Johnny saw each provision-PL Lit. 'Johnny saw each provisions' - b. John talked about the { jewelry/ furniture/ footwear } that was expensive. - (v) a. * I know John bought { jewelry/ furniture/ footwear }, I just don't know which. - b. I know John's { jewelry/ furniture/ footwear } is here, I just don't know { *which/ what } is his. It is possible that for those who accept (23c), like the reviewer, and potentially (iv) and (v), which is not lexicalizing a count determiner, but a countable determiner: which+{count NP, object mass NP}. ⁸Cada is gender invariant, i.e. it does not mark overt gender agreement, and determiner *varios* lacks a number unmarked counterpart. *Algún* may be translated as 'a/some' when occurring with singular count nouns, but when the closest idiomatic translation in the plural is 'a few' (see Gutiérrez-Rexach 2001; Martí 2008, 2015). ⁹I have kept using the object mass noun *jewelry* in English and in Spanish to establish a consistent minimal pair with the count noun counterpart *jewel*, but these are to be taken as representative examples of the whole class. In addition, this is so because in Spanish the object mass noun may have a different gender than the count noun counterpart, a point I will come back to later on. As far as I understand, there are no distributional differences between *furniture*, *jewelry*, *baggage*, *carpeting* regarding the properties being surveyed here. To illustrate that this is also the case in Spanish, examples with the pairs *mueble* 'furniture_{ct}' and *mobiliario* 'furniture' are given in (vi)-(vii). - (vi) Number marking and cardinal numeral modification - a. Johnny compró { un mueble/ dos mueble-s} Johnny bought one.м furniture.ct two furniture.ct-pl 'Johnny bought {one furniture piece/ two furniture pieces}' - b. * Johnny compró { un mobiliario/ dos mobiliario-s} Johnny bought one.м furniture two furniture-PL 'Johnny bought {one furniture/ two furnitures}' - (vii) Determiner choice - a. Cada { mueble/ *mueble-s/ *mobiliario} (singular count D) each furniture.ct furniture.ct furniture - b. Vario-s { *mueble/ mueble-s/ *mobiliario} (plural count D) several.m-pl furniture.ct furniture.ct furniture - c. Algún { mueble/ *mobiliario}, Alguno-s { mueble-s/ *mobiliario} (count D) some.м furniture.ct furniture some.м-pl furniture.ct-pl furniture - (25) a. * Johnny vio varia-s joya. Johnny saw several.F-PL jewel - b. Johnny vio varias joya-s Johnny saw several.F-PL jewel-PL - c. * Johnny vio varia-s sangre Johnny saw several.F-PL blood - (26) a. Johnny vio alguna joya. Johnny saw a.F jewel 'Johnny saw a jewel' - b. Johnny vio alguna-s joya-sJohnny saw a.F-PL jewel-PL'Johnny saw a few jewels' - c. * Johnny vio alguna sangre Johnny saw a.f blood Int.: 'Johnny saw a blood' - d. * Johnny vio varia-s joyería Johnny saw several.F-PL jewelry - e. * Johnny vio vario-s vívere-s Johnny saw several.m-pl provision-pl Lit. 'Johnny saw several provisions' - d. * Johnny vio alguna joyería Johnny saw a.F jewelry Int.: 'Johnny saw a jewelry' - e. * Johnny vio alguno-s vívere-s Johnny saw a.m-pl provision-pl Int.: 'Johnny saw a few provisions' The data discussed so far have served (i) to group nouns into two categories, i.e. count and mass, and (ii) to confirm that nouns like *furniture*, *jewelry* or *footwear* belong to the mass category. The properties described are summarized in Table 1. Table 1: Morpho-syntactic properties of mass & count nouns (English & Spanish) | | unmarked Mass | PL Mass | Obj. Mass | СТ | |----------------------------------|---------------|---------|-----------|----------| | sg/pl distinction | * | * | * | ✓ | | Modification by numerals | * |
 * | * | √ | | Compatible with each/every, cada | * |
 * | * | √ | | Compatible with several, varios | * |
 * | * | √ | | Compatible with which, algun(os) | * |
 * |
 * | √ | In the next section, I show how modification by dimensional adjectives (e.g. size/shape) can be used as a countability diagnostic: only count nouns and object mass nouns allow said modification. #### 3.2 Size adjectives as countability markers In addition to the interpretation of the noun under comparison (e.g. Bale and Barner 2009), size adjective modification has been proposed as a reliable diagnostic for determining whether the expression is countable or non-countable (Deal 2016, 2017). The generalization that arises from this work is as follows: only countable expressions can be modified by dimensional adjectives. This is first shown for the non-countable expressions: unmarked mass and plural mass nouns, e.g. (4b-c). As illustrated in (27) for English and (28) for Spanish, these nouns are unacceptable with adjectives like *small* or *large*.¹⁰ ¹⁰In Spanish, adjectives must agree in gender, and also number in the case of plural nouns, with the noun. (27) a. * The small blood. *The blood is small. b. * The large fumes. *The fumes are large. - (28) a. * La sangre pequeña, *La sangre es pequeña The.f blood small.f the.f blood is small.f 'The small blood', 'The blood is small.' - b. *Lo-s vívere-s grande-s, *Lo-s vívere-s son grande-s The.m-pl provision-pl big.m-pl the.m-pl provision-pl are big.m-pl Lit.: 'The large provisions', 'The provisions are large.' On the contrary, object mass nouns and count nouns, which are both measured in terms of cardinality, also allow size adjective modification. The relevant English data is in (29) and the Spanish counterparts are in (30). (29) a. The small {jewel/ chair} The {jewel/chair} is small b. The small {jewel-s/ chair-s} The {jewel-s/ chair-s} are small c. The small {jewelry/ furniture} The {jewelry/ furniture} is small - (30) a. La { joya/ piel } pequeña, La { joya/ piel } es pequeña The.f jewel fur small.f the.f jewel fur is small.f 'The small { jewel/ fur }', 'The { jewel/ fur } is small.' - b. La-s { joya-s/ piele-s } pequeña-s, La-s { joya-s/ piele-s } son pequeña-s The.F-PL jewel-PL fur-PL small.F-PL the.F-PL jewel-PL fur-PL are small.F-PL 'The small { jewels/ furs } 'are small.' - c. La { joyería/ peletería } pequeña, La { joyería/ peletería } es pequeña The.F jewelry furriery small.F the.F jewelry furriery is small.F 'The small {jewelery/ furriery}', 'The {jewelry/ furriery} is small.' The distribution of count and mass nouns regarding their countability properties is given in Table 2. A generalization that can be drawn from this table is that being count entails being countable, whereas being mass does not entail being non-countable. Table 2: Countable and non-countable noun classes (English & Spanish) | | Non-counta | Countable | | | |-----------------------------|---------------|-----------|-------------|-----| | | unmarked mass | PL mass | object mass | СТ | | Cardinality measurement | * | * | ✓ | √ | | Size adjective modification | * | * * * | √ | · √ | # 4 Object mass nouns: morpho-syntactic complexity Now that the count/mass and the countable/non-countable distinctions have been established, we can start to dive deep into the object mass class. In this section, I concentrate on the morphemes that participate in the object mass class and compare these morphese with those found in the count class. By doing so, we will notice two relevant patterns, one regarding the types of roots found across the two classes of nouns and another regarding the distribution of object and number-markers. #### 4.1 Count and object mass doublets A close examination of the object mass data shows that a significant number of them, if not all, is morphologically complex. First of all, the root morphemes that participate in the class of object mass nouns also participate in the class of count nouns giving rise to doublets like the ones in Table 3 for English, and
Table 4 for Spanish. In every set of examples, the count member of the doublet is in the singular (e.g. unmarked) form, to avoid any potential suppletion on the root triggered by plural-marking. The English data have been organized by the morphemes identified in Cohen (2020).¹¹ | a. | SG-CT | Obj. Mass (-ware) | b. | SG-CT | Obj. Mass (-wear) | c. | SG-CT | Obj. Mass (-(<i>e</i>) <i>ry</i>) | |----|---------|-------------------|----|--------|-------------------|----|--------|---| | | kitchen | kitchen-ware | | foot | foot-wear | | jewel | jewel-ry | | | table | table-ware | | beach | beach-wear | | drape | drape-ry | | | gift | gift-ware | | day | day-wear | | gadget | gadget-ry | | | dish | dish-ware | | neck | neck-wear | | image | image-ry | | d. | SG-CT | Obj. Mass (-age) | e. | SG-CT | Obj. Mass (-ing) | | | | | | bag | bagg-age | | light | light-ing | | | | | | lug | lug-age | | carpet | t carpet-ing | | | | | | word | word-age | | bed | bedd-ing | | | | | | sign | sign-age | | pipe | pipe-ing | | | | Table 3: Count and object mass noun doublets in English Looking at the data in these examples, we observe that the same root morpheme that is found in a count noun is also found in the object mass noun counterpart. This is true regardless of how the object mass marker is spelled out. In some cases, the root has undergone allomorphy in the presence of the object mass affix. This is illustrated by pairs such as the following in Spanish: $\underline{mueble}_{SG,CT}$ 'furniture piece' vs \underline{mobil} -iario_{object mass} 'furniture'; $\underline{cubierto}_{SG,CT}$ 'silverware piece' vs \underline{cubert} -ería_{object mass} 'silverware'. Looking at the count forms, being singular, the number marker is not overt. On the surface, we could represent the forms in these tables as in (31), where 'Ø' indicates that singular marking is null. In Spanish, -a/-o/-e are not root or number exponents, but declension class markers (e.g. Roca 1989; Harris 1991; Kramer 2015). - (31) a. kitchen-Ø, foot-Ø, jewel-Ø - b. arm-a-Ø, equip-o-Ø, muebl-e-Ø weapon-cls2-sg equip-cls1-sg funiture-cls3-sg Assuming that roots must appear with a categorizing element (Marantz 1997; Harley and Noyer 1998; Embick 2010; Harley 2014; Merchant 2019), which may be null like in English (31a) or overt like in Spanish (31b), and that number-marking on these nouns is more peripheral to the root than the categorizer (e.g. Ritter 1991; Cowper 2005; Picallo 2008), we can decompose these count expressions into the sequence of morphemes in (32). ¹¹Some object mass morphemes in Spanish, namely -aje, -ería, are more productive than others such as -(i)ario. The same seems to be true for English: -wear, ware vs. -age or -ure. Table 4: Count and object mass noun doublets in Spanish | a. | SG-CT | Obj. Mass (-mento) | b. | SG-CT | Obj. Mass (-ería) | |----|-------------------|--------------------------|----|--------------------|-----------------------------| | | arma | arma-mento | | joya | joy-ería | | | 'weapon' | 'weaponry' | | ʻjewel' | 'jewelry' | | | carga | carga-mento | | chiquillo | chiquill-ería | | | 'load' | 'collection of goods' | | 'little kid' | 'collection of little kids' | | | línea | linea-mento | | cubierto | cubert-ería | | | 'line/boundary' | 'lineation' | | 'silverware piece' | 'silverware' | | c. | SG-CT | Obj. Mass (-aje) | d. | SG-CT | Obj. Mass (-ado/a) | | | hoja | foll-aje | | profesor | profesor-ado | | | 'leaf' | 'foliage' | | 'teacher' | 'faculty' | | | peón | peon-aje | | alcantarilla | alcantarill-ado | | | 'laborer' | 'collection of laborers' | | 'sewer' | 'sewerage' | | | equipo | equip-aje | | vaca | vac-ada | | | 'outfit/utensil' | 'baggage' | | 'cow' | 'collection of cows' | | e. | SG-CT | Obj. Mass (-iario) | | | | | | mueble | mobil-iario | | | | | | 'furniture piece' | 'furniture' | | | | #### (32) $\sqrt{\text{ROOT}}$ - $n_{\text{COUNTABLE}}$ -SG/PL. I will refer to the grouping of the root and the *n* morphemes in (32) as the 'countable base'. Descriptively, we can take this to mean that the root has been marked countable and has been assigned a countable meaning, i.e. a predicate that has atoms and their sums (e.g. Bunt 1979, 1985; Krifka 1989; Chierchia 1998a, 2010, 2021; Bale and Barner 2009; Rothstein 2010, 2017). Number, e.g. sG or PL, is then added to that countable base. That said, and given the already observed similarities, we can hypothesize there to be a parallelism with their object mass counterparts: the same countable base to which Number attaches serves as the base to which the object mass morpheme also attaches. This is schematically represented in (33). ### (33) $\sqrt{\text{ROOT}} - n_{\text{COUNTABLE}}$ -OBJECT MASS. Like sg/PL in (32), object mass is not directly attached to the root but to the countable base. However, at this point, this is just a hypothesized representation. It may be the case that the object mass morpheme is directly attached to the root instead, instantiating the categorizing head: $\sqrt{\text{ROOT}}$ - $n_{\text{Object mass}}$. Given that the two hypothesized representations locate object mass in a different position with respect to the root and other nominal class markers instantiating n, they make different predictions: if object mass attaches to the countable base, just like Number does, its vocabulary items will follow overt instantiations of n; but, if object mass attaches to the root directly, unlike Number, its vocabulary items will never follow overt instantiations of n.¹² I test these hypotheses next, showing that only (33) is supported. ¹²I would like to thank an anonymous reviewer for wondering whether (33) could be independently motivated and whether #### 4.2 OBJECT MASS attaches to the countable base The difficulty of adjudicating between the two hypotheses is driven by the fact that in many cases, in particular in English, there is no overt morphological realization of n that intervenes between the root and other markers. I present evidence from two empirical domains that suggest that object mass is not directly attached to the root and in fact parallels the position of sg/pl: declension class markers in Spanish, and diminutives in English. In Spanish, nominalized roots are marked for a certain declension class. As we already observed in (31b), this marker appears between the root and number morphology. Following Kramer (2015), we can assume the following three declension classes: Class 1, nouns ending in -o; Class 2, nouns ending in -a, and Class 3, nouns ending in -e. Many nouns of Class 3 do not have an overt exponent in the singular form, but -e always shows up in the plural, e.g. Table $5.^{13}$ | Class 1 | | Cla | ss 2 | Class 3 | | | |--------------|--------------|-------------|-------------|----------------|----------------|--| | SG | PL | SG | PL | SG | PL | | | man-o-Ø | man-o-s | dí-a-Ø | dí-a-s | lápiz-Ø-Ø | lápic-e-s | | | hand-cLs1-sg | hand-cls1-pl | day-cls2-sg | day-cls2-pl | pencil-cls3-sg | pencil-cls3-pl | | | 'hand' | 'hands' | 'day' | 'days' | 'pencil' | 'pencils' | | Table 5: Noun classes in Spanish with examples Declension class markers have been located at the *n* node (e.g. Oltra-Massuet and Arregi 2005; Embick 2010; Kramer 2015; Kučerová 2018). In morphologically complex nouns, declension class exponents adjacent to the root are typically null when the vocabulary item realizing the following morpheme starts with a vowel; but they are overt if the following vocabulary item starts with a consonant. An example is in (34) with the augmentative -*az*- (roughly meaning 'large' or 'big') and the diminutive -*cit*- (roughly meaning 'small' or 'little'): in (34a), the class marker -*e* is null in the presence of the vowel-initial augmentative -*az*-, but it must be overt in (34b) when the diminutive starts with a consonant. ¹⁴ - (34) a. flor-Ø, flor-aza, *flor-e-aza flower-cls3 flower-Aug flower-cls3-Aug.F 'flower, big flower' - b. flor-Ø, *flor-cita, flor-e-cita flower-cls3 flower-dim.f flower-cls3-dim.f 'flower, little flower' the alternative could be ruled out. ¹³Unlike -a/-o agreement markers on adjectives or determiners, these exponents are not gender exponents. For more information about declension classes in Spanish, see Roca (1989); Harris (1991); Kramer (2015). $^{^{14}}$ Like adjectives in the language, diminutives and augmentatives are overtly marked for gender: -a if the gender of the noun is feminine or -o if masculine: (viii) ⁽viii) la man-o, la man-it { -a/*-o}, la man-az { -a/*-o} the.F hand-CLS1 the.F man-DIM -F -M the.F man-AUG -F -M 'the hand, the little hand, the big hand' That said, we can use the distribution of root adjacent declension class markers to probe whether object mass is attached to the countable base or directly to the root. More precisely, if attached to the base, we expect two things: (i) the declension class marker will be overt as long as the vocabulary item for object mass is starts with a consonant; and (ii) the overt class marker will surface between the root and the vocabulary item for object mass. If instead object mass is directly attached to the root, we expect no class marker to be ever realized between the root and object mass. The only object mass exponent in Table 4 that begins with a consonant is *-mento*. The rest all incorporate an initial vowel (e.g. lal in -aje or lel in -eria). As the examples in (35) show, the class marker -a separates the root from the object marker -mento, just like it separates the root from the plural marker in count nouns. ``` (35) a. arm-a (-s), weapon-cls2 -pl -mento weapon-cls2 -obj.mass.cls1 b. carg-a (-s) load-cls2 -PL carg-a -mento load-cls2 -obj.mass.cls1 c. líne-a (-s) line-CLS2 -PL line-a -mento line-cls2 -obj.mass.cls1 ``` The data in (35) are only consistent with the hypothesized representation in (33): -a realizes n and -mento realizes object mass. What is more, plural marking and the object mass
marker surface on the same position with respect to the class marker and the root; a result that is expected under countable base attachment, but not under direct attachment. We can therefore generalize that the other instances of object mass nouns are no different at an abstract level. They only differ on whether the class marker realizing n is overt or not -a situation which is not surprising giving that the same class marker on the same root may be realized in some cases but not others, e.g. Table 5. In the case of English, we cannot rely on declension class markers because there are none. However, we can make use of diminutive formation strategies. Diminutives in English (e.g. -ie/-y, -let, -ling) must appear between the root and the plural-marker as shown in (36). ``` (36) a. dog-s, dogg-ie-s, *dog-s-ieb. pig-s, pig-let-s, pigg-ie-s, *pig-s-let, *pig-s-ie ``` Regarding their position, diminutives are similar to declension class markers, and in fact they have also been associated with *n*-morphemes (e.g. Wiltschko 2006; Ott 2011; Fábregas 2013; Kramer 2015; Gouskova and Bobaljik 2022). If object mass attaches to the base, we expect it to be realized following the diminutive – just like the realization of PL in (36). If object mass directly attaches to the root, that same order is not expected to be grammatical. The relevant examples are in (37).¹⁵ ¹⁵An example of *doggiware* found online is given in (ix). I would like to thank Ruth Kramer (p.c.) for example (37b). - (37) a. dog-ware, dogg-ie-ware, *dog-war-ie - b. pig-wear, pig-let-wear, *pig-wear-let - c. pig-wear, pigg-ie-wear, *pig-wear-ie The data in (37) show that diminutives and object mass markers can co-occur in the same expression; and in fact, when they do, the diminutive must surface between the root and the object marker. Deviating from this ordering is judged ungrammatical. This is expected if the diminutive, realizing n, is closer to the root than -ware/-wear realizing OBJECT MASS. #### 4.3 The generalization The observations from doublets, class markers and diminutives support the structural descriptions in (38), for both count and object mass nouns. I take these descriptions as evidence for the generalization in (10) repeated below: (38) a. $$[[\underbrace{\sqrt{\text{ROOT}} \, n_{\text{COUNTABLE}}}_{jewel}] \underbrace{\alpha[\text{OBJECT MASS}]}_{-ery}]$$ (to be slightly updated) b. $[[\underbrace{\sqrt{\text{ROOT}} \, n_{\text{COUNTABLE}}}_{jewel}] \underbrace{Number[\text{sg/pL}]}_{-\mathcal{O}/-s}]$ #### (10) The Countable Base Generalization Object mass nouns are built on top of the same countable base (e.g. root+categorizer) as count nouns. The insight behind the generalization is that the grammatical representation of object mass nouns has a nominal core consisting of a root and a categorizer that makes the root countable. This core is the exact same one that count nouns are built on. Where the two expressions differ is in the extra piece of structure: count nouns have a terminal node Number, which may be specified as either [sg] or [pl]; but object mass nouns do not have Number. Instead, they have a terminal node, whose category I am representing with 'a' for the moment, that encodes [OBJECT MASS]. ¹⁶ ``` (x) a. sucre sucre-rie b. suiker, suiker-goed c. silver, silver-ware sugar sugar-obj.mass sugar sugar-obj.mass 'sugar, confectionery' (French) 'sugar, confectionery' (Dutch) ``` The reviewer claims that these examples have a mass and non-countable base (e.g. *silver*, *sugar*). I want to argue that these are seemingly counterexamples and that the base is actually countable. It is not uncommon for notional mass roots to enter the syntax into a count(able) frame. We already observed this in footnote 5 for expressions like *some beers*, *three wines*, *two waters*. Therefore, we can hypothesize that the roots in the expressions in (x) have undergone the same process: they have been paired with a countable categorizer. Evidence in support of this line of thinking is in (xi) where *silver* and *sugar* are understood as count(able) expressions (e.g. container, type), as shown by plural-marking and numeral modification. - (xi) a. How many silvers are you willing to trade for one gold? One silver is not going to be enough. - b. Two sugars, no milk please. ⁽ix) So im getting a new pup in a few weeks time and i was wondering if there are any PJ **doggieware** sites. i think a sausage dog in a mookie shirt would be awesome! (https://community.pearljam.com/discussion/81493/pj-apparel-for-dogs) ¹⁶An anonymous reviewer notes that the generalization is not fully accurate because of examples like (x): There is a potential caveat to this generalization, regarding doublets. Despite the fact that doublets are common and productive, it is not the case that every object mass noun has a count noun counterpart. For example, in English there are some well-known lexical gaps. There is no vocabulary item *furn, *cutle* or *equip that means 'furniture piece', 'cutting tool' or 'equipment piece', respectively. The lack of the count vocabulary item may thus be seen as a serious issue for the generalization. However, two notes are in order. First, these gaps are not universal but rather language-specific. For example, in Spanish there are count noun expressions for *furniture* and *equipment*, e.g. *mueble* and a *equipo* in Table 4. That is, it is possible for a language to express the concept furniture as a count noun. What is more, it is a well-known fact that languages may vary with respect to whether the same concept encoded by a root is expressed as a count or mass noun(e.g. Chierchia 1998a).¹⁷ It is therefore possible that this very fine-grained variation is modulated by the morpho-syntactic environment in which certain roots occur (e.g. Soja et al. 1991; Deal 2017). Second, the fact that a prototypical object mass noun lacks a count noun counterpart does not entail that former are morphologically simplex. In fact, vocabulary items like *furniture*, *cutlery* and *equipment* can be decomposed into smaller parts. For example, the surface form *furniture* is related to expressions such as *furnish* (verb) and *furnishing* (gerund, noun): all three forms share a root $\sqrt{\text{FURN}}$. Similarly, in the case of *cutlery*, the noun is related to the expression *cutlet* (noun) which is also related to *cut* (noun, verb): all three vocabulary items are related by virtue of sharing the same root $\sqrt{\text{CUT}}$. The situation with *equipment* is the same: *equip* (verb) and *equipment* both share the same root $\sqrt{\text{EQUIP}}$. Therefore, it does not seem unreasonable to hypothesize that these object mass nouns are also morphologically complex, as summarized in Table 6.¹⁸ What begs an explanation is why there is no singular/plural count vocabulary item. Table 6: Morphologically complex object mass nouns with no count noun counterpart | G-CT | Obj. mass | Root | |------|-----------|-----------------------| | _ | furniture | √FURN | | _ | cutlery | $\sqrt{\text{CUT}}$ | | _ | equipment | $\sqrt{\text{EQUIP}}$ | This is also true for Dutch *suiker* 'sugar'. In fact, De Belder (2013, p.45: ex.83) illustrates that *suiker* may appear in a count(able) environment, directly modified by a numeral: ``` (xii) drie suikers: fructose, glucose en saccharose three sugars fructose glucose and saccharose 'three sugars: fructose, glucose and saccharose' ``` c. Fruit is rich is sugars. d. Ajouter le-s trois sucre-s: vanillé, de canne et en poudre add the-PL three sugar-PL vanilla of cane and in powder 'add the three sugars: vanilla, can and powdered.' (French) ¹⁷For instance, as noted in Chierchia (1998a), the concept for HAIR is expressed as mass in English (*e.g. all the hair*) but as count in Spanish/Italian (e.g. *tutt-i i capell-i* 'all-M-PL the.M-PL hair-M.PL'). ¹⁸We can think about the relation between these forms in parallel to the relation that exists between sing(s), singer, sang and song: they are not lexical primitives, but are all related to the root \sqrt{sing} (Embick 2015, p.18). # 5 The properties of [OBJECT MASS] We have established that object mass nouns are morphologically complex. The question now is what the morpheme $\alpha[object\ mass]$ is. In the following subsections, I show that (i) it must be different from the morpheme Number[PL]; and (ii) it has the properties of a nominalizer in the two languages under consideration. ## 5.1 OBJECT MASS morpheme is not PL One of the challenges with object mass nouns is their resistance to take plural-marking. A possible hypothesis that is consistent with the generalization in (10), and the structural representations in (38), is that the α [OBJECT MASS] is itself Number[PL]. This is in line with the insights from the traditional view outlined in the introduction. Besides, this hypothesis is attractive on semantic grounds: it is generally assumed that these two classes of nouns denote atomic pluralities, i.e. sets of atoms and their sums (Gillon 1992; Chierchia 1998a, 2010, 2021; Bale and Barner 2009; Rothstein 2010, to name some examples). However, it would be problematic and unmotivated to equate α [OBJECT MASS] in (38a) to Number[PL]. For starters, it is never exponed as [PL] and it never triggers plural agreement both DP-internally and externally. This is shown in (39) for English: the demonstratives must be unmarked for number and the verb must agree in third person singular with the object mass noun subject. - (39) a. { This/*These } furniture, { This/*These } jewelry. - b. Furniture { is/*are } sold here, and jewelry { is/*are } sold there The same agreement patterns are observed in the Spanish examples in (40): the definite determiner must also be unmarked for number in (40a), and the (copula) verb must agree in third person singular with the object mass noun subject in (40b). - (40) a. { el/ *lo-s } mobiliario, { el/ *lo-s } armamento the.m the.m-pl furniture the.m the.m-pl
weaponry - b. El mobiliario { está/*están } aquí, y el armamento { está/*están } allí the.m furniture is are here and the.m weaponry is are there 'The furniture is here and the weaponry is there' Second, allomorphy is conditioned by the terminal nodes and the features on them, given that certain locality and domain requirements are met, rather than the vocabulary items themselves. Thus, if this terminal node $\alpha[\textsc{object}\ \textsc{mass}]$ was in fact Number[PL] we would expect it to trigger the same types of root allomorphy that [PL] on Number does. However, this prediction is not borne out. Some English data are given in (41) and (42). 19 ``` (xiii) \sqrt{\text{root}} \Leftrightarrow root/_n_{\text{countable}}] \text{Num[pl]}/\alpha[\text{object mass}]] ``` For now it is just worth mentioning that any theory of allomorphy must account for the fact that Num[PL] may trigger allomorphy $^{^{19}}$ Two notes are in order here. First, following Harley (2014), I am assuming that (i) roots have no phonological/semantic content by themselves and (ii) roots are abstract indices that are mapped to a form and meaning depending on the syntacitic context in which they are found. For expository and descriptive purposes, however, I will refrain from the index representation. Second, when looking at the rules, the reader might be wondering where the categorizing n-head is in the contextual specification. For ease of representation, I have left it out of the formulation of the rules here. The full contextual representation is something like the following in (xiii). ``` (41) a. \sqrt{\text{LEAF}} \Leftrightarrow leavel _\text{Num[PL]} leaves b. \sqrt{\text{LEAF}} \Leftrightarrow folil _\alpha[\text{OBJECT MASS}] foliage, *leavage (42) a. \sqrt{\text{FOOT}} \Leftrightarrow feetl _\text{Num[PL]} feet b. \sqrt{\text{FOOT}} \Leftrightarrow footl \alpha[\text{OBJECT MASS}] footware, *feetware ``` In (41), [PL] triggers the insertion of the vocabulary item *leave*; if we supplant the Number with α , a different vocabulary item is inserted: *foli*-. A perhaps more compelling case is (42). The root for *foot* has a suppletive allomorph in the plural: *feet*. In contrast, α [OBJECT MASS] does not trigger suppletion of the root, which surfaces as the unmarked or elsewhere form, e.g. *foot*. Similar allomorphy contrasts can be found in Spanish. Some representative examples are in (43)-(45). ``` (43) a. √HOJ ⇔ hojal _Num[PL] hojas ('leaves') b. √HOJ ⇔ folll _α[OBJECT MASS] follaje, *hojaje ('foliage') (44) a. √MUEBL ⇔ mueblel _Num[PL] muebles ('pieces of furniture') b. √MUEBL ⇔ mobill _α[OBJECT MASS] mobiliario, *muebliario ('furniture') (45) a. √CUBR ⇔ cubiertol _Num[PL] cubiertos ('pieces of silverware') b. √CUBR ⇔ cubertl _α[OBJECT MASS] cubertería, *cubiertería ('silverware') ``` The Spanish case in (43) parallels the *leave/foliage* contrast: a plural feature does not trigger suppletion of the root, but the object mass counterpart feature does. The cases in (44) and (45) show a different type of allomorphy, but allomorphy nonetheless. In (44), the *b*-form lack a diphthong and involves metathesis of the liquid and the vowel, which has shifted in height. In (45), the *b*-form lacks a diphthong as well. We can conclude that this morpheme is not Number[PL]. It cannot be Number[sG] either. If these nouns were [sG]-marked, we would expect them to form a natural class with singular count nouns with respect to some property beyond singular agreement. However, this is not the case either. For example, Chierchia (1998a) observes that universally there is no determiner that exclusively selects for singular count nouns and mass nouns. Two more issues arise. If object mass nouns nouns are [sG]-marked, and share with count nouns marking for countability, they would be grammatical with why exclusively singular count determiners such as *each*, *every*, *a* and their relevant cross-linguistic counterparts. In addition, quantity determiners (e.g. *much*, *many*, *more*), which are unacceptable with singular count nouns, are acceptable with object mass nouns. This is shown in (46) with the comparative form of the determiner. ²¹ ``` (46) a. more { *jewel/ jewelry } b. más { *joya/ joyería } more jewel jewelry ``` Last but not least, if it is the case that $\alpha[OBJECT\ MASS]$ is Num[sg], the lack of a plural counterpart is puzzling. In particular, this is due to the fact that [sg] and [PL] are both on the same Number terminal on the root past the nominalizer, just like T does on the root past the verbalizer, considering that allomorphy is constrained by locality (Embick 2010, 2015; Bobaljik 2012; Moskal 2015; Moskal and Smith 2016; Bobaljik and Harley 2017). In footnote 38, I discuss two approaches to this: the cyclic+zero-morph approach from Embick (2010) and the Hyper-Contextual VI rule approach from Moskal and Smith (2016). I show that, for the purposes of this paper, nothing hinges on this choice. ²⁰Singular agreement need not entail [s_G]-marking. Singular agreement may arise as the default option in the absence of any number feature being present (Cowper 2005; Nevins 2007, 2011; Coon and Keine 2021; Toquero-Pérez 2024). ²¹The reason behind this is restriction is found in the structure of the extension of the NP. See footnote 1. (Ritter 1991; Cowper 2005; Harbour 2007, 2011; Cowper and Hall 2009, 2014). Thus, one would need to explain why these nouns are compatible with one feature but not the other. Despite the fact that the α , encoding the [OBJECT MASS], and Number, encoding [SG/PL], are distinct, they share some notable properties. They may both trigger allomorphy on the root, e.g. (41) and (42), and, as the structural descriptions in (38) indicate, the syntactic position that they occupy is very much the same. Based on these facts, and the observation that Number and α morphemes never co-occur, I propose the hypothesis in (47).²² ## (47) The Number-Object Mass Overlap Number and the α [OBJECT MASS] terminal are in overlapping distribution, i.e. they both require complementation by $n_{\text{COUNTABLE}}$. #### 5.2 The object mass morpheme is a nominalizer The data just discussed raise the question about the category that α belongs to. Building on De Belder (2013, p.42), I am going to argue that this morpheme is actually a nominalizer of category n in these languages.²³ Pretheoretically at least, it is argued that morphemes generating object mass nouns in these languages are 'derivational', rather than 'inflectional'. One of the hallmark properties of derivational morphemes is that they can change the category of the base they attach to. This is true of the object mass morpheme. The same morpheme can create (mass) nouns out of other nouns, but also out of verbs. Some examples are given in (48)-(49), where category labels on the base are taken descriptively at face value.²⁴ - (48) a. $carpet_V + object Mass \rightarrow carpeting_N$ 'the result of covering something with a carpet' - b. $carpet_N + object Mass \rightarrow carpeting_N$ 'a collection of carpet-related items' - c. $jewel_N + object mass \rightarrow jewelry_N$ 'a collection of jewel-related items' - (49) a. alcantarillar_V + object mass \rightarrow alcantarillado_N ('sewerage') 'the result of installing sewers' - b. $alcantarilla_N + object Mass \rightarrow alcantarillado_N$ ('sewerage') 'a collection of sewer-related items' - c. $vaca_N + object Mass \rightarrow vacada_N$ 'a collection of cows' As observed in the examples above, adding object mass to the base seems to recategorize the base into a noun. In addition, related to this recategorization, the effect that object mass has on the interpretation of the stem may be idiosyncratic. That is, while it can create collections, these are not collections of X-items, where 'X' stands for the individual/event that the base denotes; instead, these are collections of items that stand in some relation with whatever the base denotes. That relation seems to be underspecified. For instance, if we think about what it means for something to qualify as 'jewelry', we can intuitively say something along these lines: jewelry is a collection of items that are canonically made from or contain jewels. Thus, we can think of 'made of/contains' as the value ²²Two elements α and β are in overlapping distribution if α and β can both occur in context C and the choice between the two can indicate a difference in meaning, (Bale and Reiss 2018). ²³This is also the case in Dutch, (De Belder 2013), but not in Czech to be discussed in section 10. ²⁴In section 9, I will discuss the eventive object mass nouns in detail and argue that their representation is consistent with the containment hypothesis. for the relation introduced by OBJECT MASS when the base is *jewel*-.²⁵ Similarly, 'footwear' can be thought of as 'a collection of items that are worn by someone's feet'. Under decompositional approaches to morpho-syntax, such as Distributed Morphology (Halle and Marantz 1993), the difference between derivation and inflection is not a grammatical primitive but domain and category-driven. Derivational morphemes are generally represented by categorizing heads and inflectional morphemes correspond to functional heads such as those encoding number, person, definiteness or case (Marantz 1997, 2001, 2013; Arad 2003; Embick and Marantz 2008; Kramer 2015; Wood 2023). In this regard, labelling the α as n as opposed to Number is consistent with this view. In addition to creating new nouns, nominalizers have been shown to change the gender of the base they attach to (Wiltschko 2006; Steriopolo and Wiltschko 2010; Kramer 2015). OBJECT MASS has this property as well. In Spanish, the count nouns *arma* 'weapon' and *grada* 'grandstand' are feminine as indicated by the agreement on the postnominal adjective in (50). (50) a. arm-a pesad-a weapon-cls2 heavy-f '(a) heavy weapon' b. grad-a nuev-a
grandstand-cLs2 new-F '(a) new grandstand' However, adding object mass markers such as *-mento* and *-erío* to *arma* and *grada*, respectively, makes the nouns masculine. This is shown in (51), where the adjective must inflect for masculine. a. arm-a-mento pesad { -o/*-a } weapon-CLs2-OBJ.MASS.CLs1 heavy -M -F 'heavy weaponry' b. grad-Ø-erío nuev { -o/*-a } grandstand-CLs2-OBJ.MASS.CLs1 new -M -F 'collection of new grandstands' The data about recategorization and gender shifts are strong evidence for the *n*-status of the α terminal.²⁶ As a result, we can update our structural description as in (38a) below. (38a) $$[[\underbrace{\sqrt{\text{ROOT}} \, n_{\text{COUNTABLE}}}_{jewel}] \underbrace{n[\text{OBJECT MASS}]}_{-ery}]$$ (final version) #### 6 Summary I have motivated the generalization that object mass nouns and count nouns share a 'countable base', i.e. root and categorizer, which I represented as in (38) The insight of this generalization leads to the hypothesis in (11) repeated below. (11) The representation of object mass (and count nouns) properly contains a countable base. ²⁵In the article *This Guide to Jewellery Production* by Dauvit Alexander, the author, a professional jeweler, states the following: "Jewellery is broadly defined as "ornament for the body […] the majority of jewellery can be described as being wearable ornaments, often made from high-value materials such as precious metals and gemstones" (https://make.works/blog/guide-to-jewellery). Cambridge English Dictionary online defines 'jewel' as "a precious stone that is used to decorate valuable objects" (https://dictionary.cambridge.org/us/dictionary/english/jewel). ²⁶See also Fábregas (2013); Kramer (2015) for additional evidence that changes in declensional class and gender-marking involve renominalization. Where the types of nouns differ, however, is in the morpheme that occupies the position outside of the base: Number for count nouns, marking the noun as singular or plural; and a nominalizer in the case of object mass nouns. The picture that emerges is twofold. First, we can hypothesize that countability is syntactically determined: count nouns (both singular and plural) and object mass nouns form a natural class by being marked for countability. Second, Number and the object mass nominalizer are in overlapping distribution, as formulated in the hypothesis in (47): where you find one, you do not find the other. If correct, this is key because it provides an avenue for explaining why these nouns resist to be number-marked. Both Number and this nominalizer require a countable-marked complement; that is, the two terminals select for the same sister, which suggests that the two terminals are in competition with each other. In what is left of the paper, I develop a theory that accounts for the properties and the generalizations outlined. #### 7 Some ancillary assumptions I am assuming a generative approach to syntax as outlined by Chomsky (1995, 2000, 2001, 2008) and subsequent work, in tandem with the Distributed Morphology model (Halle and Marantz 1993; Marantz 1997; Harley and Noyer 1998; Embick and Noyer 2001; Embick 2007, 2010, 2015; Embick and Marantz 2008; Bobaljik 2012; Harley 2014). Under DM, the terminal nodes provided and manipulated by the syntax are simply bundles of features. These features may be interpretable or uninterpretable. The interpretable features will be notated as [F] and the uninterpretable features will be noted as [uF]. 27 I further assume that all syntactic operations, including Merge and Move, are feature driven (e.g. Svenonius 1994; Adger 2003; Pesetsky and Torrego 2006; Heck and Müller 2007; Müller 2010; Folli and Harley 2020). I represent c-selectional requirements as $[\bullet F \bullet]$ on the relevant terminal. Following Adger (2003, p.67), I assume that $[\bullet F \bullet]$ is checked under sisterhood: a feature $[\bullet F \bullet]$ on a syntactic object Y is checked when Y is sister to another syntactic object Z which bears a matching feature F. A head with a selecting feature will project the label of the newly created node: $\{\alpha [\bullet \beta \bullet], \beta\} \rightarrow \{\alpha, \{\alpha [\bullet \beta \bullet], \beta\}\}$. Following Chomsky (2000) and others, I will assume that there is an operation called Agree between a probe (with unvalued features) and a goal (with a feature that matches the probe's): the values of F on the goal are copied onto the unvalued uF counterparts after matching. After spell-out, at PF, the feature bundles on the terminals are mapped to an exponent via Vocabulary Insertion (VI) rules, which are subject to competition as mediated by the Subset Principle (Kiparsky 1973). Following the notation from Embick (2015), VI rules have the format in (52). $$\alpha[F] \Leftrightarrow X/_\beta$$ 'Map F on α to vocabulary item X in the context of β ' α is the syntactic category of the terminal; [F] is the relevant feature or feature bundle on the terminal node; X, to the right of the bidirectional arrow, represents the phonological form, i.e. the exponent; and the slash '/' indicates the context of application, which may be more or less specific (see Moskal 2015; Moskal and Smith 2016). $^{^{27}}u\text{Fs}$ can themselves be unvalued or inherently valued (Pesetsky and Torrego 2007): $[u\text{F:}_] \sim [u\text{F:}\underline{val}]$. The assumption that uFs may be inherently valued is not crucial for the present analysis. #### 8 Spelling-out the theory: individuation and number It is generally assumed in DM-based approaches that there are two distinct domains for the computation of morphological and semantic processes: an "inner" domain and an "outer" domain. The former is tied to morphological and lexical irregularity or idiosyncrasies, and the latter is tied to morphological and semantic regularity (e.g. regular inflection). The working hypothesis in the literature is that the inner domain is located within the categorizing domain, i.e. categorizers and below including the root, whereas the outer domain is characterized by functional projections above *n*P, i.e. in the case of nominals Number, D or K, (Marantz 2001, 2013; Arad 2003; Embick 2010; Harley 2014; Wood 2016, 2023): Figure 1. Figure 1: Inner vs. outer domains within nominals I propose that a theory of the count/mass and countable/non-countable distinction must make reference to at least two types of features, whose syntactic and semantic contribution must differ: individuation and number. The notion of 'inidividuation' as a syntactic property is not a novel idea, and has in fact been proposed to be encoded in different ways (e.g. Harley and Ritter 2002; Borer 2005a; Cowper and Hall 2009, 2012; Smith 2021). Here I am building on insights from Bale and Barner (2009) and Deal (2017), for who individuation happens at the 'lexical' level: within a DM-style approach like the one adopted here, this is as close to the root as possible, i.e. the categorizing head that the root adjoins to.²⁸ We can think of [IND(IVIDUATED)] as a classificatory feature that, when applied to a root, makes said root countable, i.e. it introduces reference to atoms and sums of atoms. We can simply state this as in (53), where '*' represents Link's (1983) closure under sum operation. (53) if $atom(x) = \{x: x \text{ is an atomic thing}\} = \{a, b, c\}$, then *atom(x) = $\{x: x \text{ is an atomic thing or sum of atomic things}\} = \{a, b, c, ab, ac, bc, abc\}$ If the category head lacks the [IND] feature, the root will not be marked for countability, and will therefore be non-countable. In semantic terms, the nominal predicate will be anti-atomic, i.e. not be generated from the set of atoms. See Bunt (1979); Gillon (1992); Wellwood (2019) for a definition.²⁹ ²⁸For Bale and Barner (2009), there are two *ns*: one marked [COUNT] and the other unmarked. For Deal (2017) individuation is encoded via an abstract morpheme that is located between the root and Number terminals. Harley and Ritter (2002) propose a feature geometric account according to which individuation is the dominating number feature: [Individuation] → {[MINIMAL]/ [GROUP]}. They describe the contribution of this feature as sorting "entities in the world according to their discourse independent properties, that is their quantity and class" (p.490). This notion of [Individuation], i.e. a classificatory feature that sorts the noun or expression into things that can be counted, is very much aligned with what I am proposing in the main text, and with the formalization in Bale and Barner (2009) and Deal (2017). [sg] and [pl], what Harley and Ritter (2002) call [MINIMAL] and [GROUP], are then dependents of [Individuation]. Given that there are plural-marked nouns that are not necessarily countable or 'individuated', I have decided not commit to such a feature geometric relation. ²⁹Bale and Barner (2009, p.238) refer to an atomic predicate as 'individuated' and to the anti-atomic one as 'continuous'. That said, the categorizing ns that roots may combine with come into the two "flavors" in (54). #### (54) Countable vs. Non-countable *n* - a. n[IND(IVIDUATED)] - b. *r* The presence of the [IND] feature on n is conceptually justified. The countable/non-countable distinction is in many ways idiosyncratic, and generally considered a "lexical" property of roots (Soja et al. 1991; Chierchia 1994; Rips and Hespos 2019). [IND] is within the inner nominal domain identified in Figure 1, which is responsible for such idiosyncrasies. What is more, it is also not unreasonable to hypothesize that a root must first be individuated by introducing the relevant atomic structure that constitutes the basis for counting before the cardinality of the atoms in its extension can be measured (e.g. via number marking, quantity determiners or numeral modification).³⁰ It is also empirically justified to separate plural-marking from individuation marking. For instance, determiners are
not only sensitive to the noun being number-marked, but also to it being count; thus we need a feature making [IND] (in addition to Number) a possible goal for probes on determiners to enter an Agree relation with. Second, there are plural marked nouns like *fumes* in English or *víveres* 'provisions' that are nevertheless mass and non-countable. These facts are problematic for any theory in which plural-marking entails countability, as proposed by Borer (2005a) and Cowper and Hall (2009, 2012). Moreover, having this feature helps us formally capture the similarities between object mass nouns and count nouns: the countable base is an [IND]-marked root. Besides [IND] on n making the basic countability distinction, I assume that there are two number features: [SG] for singular and [PL] for plural. In the case of count nouns, these features are encoded by a Number head which is located above n and below D (e.g. Ritter 1991; Alexiadou 2004; Cowper 2005; Picallo 2008; Harbour 2011; Toquero-Pérez 2025). I propose that Number requires complementation by an nP specified as [IND]. This requirement is encoded with the feature [•IND•] on the Number head. Number may not be the sole location for number-marking. In fact, it has been argued that the source of plural-marking on lexical or idiosyncratic plurals is not Number but somewhere in the inner NP domain, namely n (Alexiadou 2004, 2015; Acquaviva 2008, 2016; Wiltschko 2008, 2021; Kramer 2016; Kouneli 2021). I assume that some ns may bear a [PL] feature, giving rise to nouns that are plural, but which need not be count (e.g. plural mass). 31 Last but not least, it has become evident that we need an additional feature that encodes object MASS properties. De Belder (2013); Alexiadou (2015); Lieber (2016) call this feature [COLL(ECTIVE)], building on insights from Corbett (2000). In his work, the label 'collective' is used to refer to nouns denoting a group whose members are conceived of as a unit. He goes on to point out that the members of the collection share something in common; Corbett 2000, p.141 refers to it as 'the cohesion of a group'. This is intuitively accurate for the case of object mass nouns.³² Given the discussion in subsection 5.2, this feature is in a n head. Just like Number, I take n[COLL] to require complementation by an nP specified as [IND]: $[\bullet \text{IND} \bullet]$. Semantically, this feature creates a plurality of sorts, described as in (55). ³⁰See for instance, Rothstein (2010, 2017, 2021): atomic reference constitutes the basis for counting. ³¹Despite the differing location, I assume that the meaning of number features may be uniform: [sg] maps a noun to a singularity, i.e. a set of atoms or minimal elements which need not be atoms; [PL] maps the noun to an atomic or anti-atomic plurality. ³²See subsection 5.2 and footnote 25. (55) [COLL]: when given an individuated item α , it creates a collection of items β which stand in a relation with α .³³ In a nutshell, the proposed theory is summarized as follows: - Count NPs are marked for [IND] on n and [SG/PL] on Number. - Mass NPs lack Number. - An NP is countable if it is [IND]-marked (e.g. count NPs and object mass NPs). - Object mass nouns are marked for [IND] but lack of Number. Instead they are [COLL]-marked. - Both n[COLL] and Number select for an [IND]-marked complement. #### 8.1 The syntax of count nouns and non-countable mass nouns I propose that count nouns have the structure in (56). The root adjoins to a categorizing n that is specified as [IND], marking the nP as countable. Number requires complementation by [IND], as indicated by the bullet feature, which is satisfied upon merger. Number then projects on top of nP. This ensures obligatory number marking in count nouns in languages like Spanish or English. Depending on the feature specification on Number, the noun will be marked singular, e.g. [SG], or plural, e.g. [PL]. #### (56) Singular/Plural Count With respect to unmarked and plural mass nouns, I propose that their underlying structures are as illustrated in (57). Unmarked mass nouns in (57a) are underspecified for individuation, which entails no atomic structure and therefore non-countable properties, and lack NumP. As a result singular/plural-marking contrasts are precluded. We can attribute the failure to mark for [sg/pl] to the c-selectional requirement on Number: merger of Number and underspecified n will not check off Number's [•IND•] feature. Likewise, plural mass nouns in (57b) are neither [IND] nor Number-marked. The source of [pl]-marking is the nominalizer itself (e.g. Alexiadou 2004, 2011; Acquaviva 2008; Kouneli 2019). 34 ³³Note that the meaning of this feature is not too different from what Tomioka (2021) proposes for associative plurals. $^{^{34}}$ Support for the low position of [PL] with these nouns can be found in noun-noun compounds where only the head of the compound can be inflected for number, a restriction that has been attributed to the fact that the non-head noun may be as large as an nP, but it does not include NumP (Wiltschko 2008; Harley 2009): (xiv)-(xv). ⁽xiv) a. street dog(-s) b.* street-s dog(-s). #### (57) a. Unmarked Mass #### b. Plural mass nouns Based on these structures, the reason why mass nouns form a natural class is because of the absence of the Number projection. This conclusion is in line with previous proposals such as Borer (2005a); Harbour (2009, 2011); Cowper and Hall (2009, 2012); Mathieu and Dali (2021), for who mass nouns are syntactically more impoverished than count nouns. Given that Number is the locus of [sg/pl] features, the unavailability of singular/plural contrasts follows from the absence of NumP. This featural account can also derive the observations with respect to the determiners in (20)-(26). These determiners are sensitive to individuation as well as number features. While all of the relevant determiners have a [uIND:__] probe, they differ in the granularity of the number probes: [usg:__], [uPL:__] or [uNum:__]. This is summarized in Table 7. Table 7: The features on Ds | Determiner type | u F on D | F on xNP | |----------------------------------|------------------------|----------| | sg-ст D (e.g. each, every, cada) | [<i>u</i> sg:] | [sg] | | | [<i>u</i> IND:] | [IND] | | PL-CT D (e.g. several, varios) | [<i>u</i> PL:] | [PL] | | | [<i>u</i> IND:] | [IND] | | CT D (e.g. which, algun(os)) | [<i>u</i> Num:] | [SG/PL] | | | [<i>u</i> IND:] | [IND] | The distribution of the features on the D heads explains why none of these determiners are acceptable with (unmarked or plural) mass nouns: successful Agree cannot occur because the relevant features that the probes on D seek are not part of the representation of these nouns. The other relevant asymmetry between count nouns and non-countable mass nouns concerned modification: numerals and size adjectives. The key to understanding numeral and size adjective modification is the extra piece of structure made available by count nouns: NumP, enabled by n[IND]. If we look at ``` (xv) a. perro(-s) policía b.* perro(-s) policía-s dog-PL police dog-PL police-PL 'police dog(s)' ``` When the noun-noun compound has a plural mass noun as a non-head, plural-marking on the non-head survives: (xvi)-(xvii). This fact is predicted if [PL] on these plural mass nouns is not located on Number, but on n, as I am proposing here. - (xvi) a. dreg-s filter(-s) b.* dreg filter(-s) - (xvii) a. niño(-s) baba-s b.* niño(-s) baba kid.m-pl drool-pl kid.m-pl drool 'drooling boy' (lit. 'drools boy', i.e. boy that has/does a lot of drooling) word order patterns, we observe the following: (i) size/shape adjectives precede classificatory adjectives; (ii) numerals precede both types of adjectives; and (iii) determiners, including possessors, must precede everything. This is shown in (58) for English. #### (58) Word orders - a. D > # > size/shape A > Classificatory A > N{The/ John's/ These} five big Spanish books. - b. D > # > Classificatory A > size/shape A > N* {The/ John's/ These} five Spanish big books. - c. D > Ssize/shape A > # > Classificatory A > N* {The/ John's/ These} big five Spanish books. - d. #>D> size/shape A > Classificatory A > N* Five {the/ John's/ these} big Spanish books. Of all the orders in (58), only (58a) is grammatical. The situation in Spanish is very much the same, with the caveat that classificatory adjectives are always postnominal, as the contrast in (59a) and (59b) shows. However, in cases in which the size/shape adjective is also postnominal the order is fixed and mirrors English: size/shape adjectives have to occur further away from the noun than classificatory ones, signaling they have higher scope, e.g. (59c). #### (59) Word orders for Spanish - a. D > # > size/shape A > Classificatory A > N - * Lo-s cinco grande-s españole-s libro-s the.m-pl five big-pl Spanish-pl book.m-pl Int.: 'The five big Spanish books' - b. D > # > size/shape A > N > Classificatory A Lo-s cinco grande-s libro-s españole-s the.M-PL five big-PL book.M-PL Spanish-PL 'The five big Spanish books' - c. D > # > N > Classificatory A > size/shape A Lo-s cinco libro-s españole-s grande-s the.m-pl five book.m-pl Spanish-pl big-pl 'The five big Spanish books' - d. D > # > N > size/shape A > Classificatory A * Lo-s cinco libro-s grande-s españole-s the.m-pl five book.m-pl big-pl Spanish-pl 'The five Spanish big books ' I take these (strict) ordering D > # > size/shape A > Classificatory A > N to represent the structural height at which the different modifiers are introduced.³⁵ Namely, classificatory adjectives are adjoined the lowest in the structure (Alexiadou et al. 2007; Svenonius 2008; Wiltschko 2014; Dékány 2021): nP. $^{^{35}}$ I assume, as is standard in the literature, that the different adjective-noun orderings in Spanish are derived via n/nP movement to a higher head (Cinque 2005, 2010). See Fábregas (2017, sec.5) for an overview. Size/shape adjectives must be
adjoined higher than the lowest *n*P dominating the root (Cinque 2005, 2010; Svenonius 2008; Deal 2017; Dékány 2021; Toquero-Pérez 2025), which in the case of count nouns is NumP. Numerals are arguments of a functional head, i.e. CARD(inlaity) after Scontras (2013), which is higher than Number. In fact, I propose that this CARD head is sensitive to there being a Number projection; a requirement that is enforced by the selectional feature [•Num•] on CARD. Finally, determiners and demonstratives are introduced as D heads (Abney 1987; Corver 1990). The full DP structure for count nouns is in (60). #### (60) The articulated structure for count nouns The syntax in (60) is consistent with analyses that have located numerals higher than Number but lower than D, e.g. Pancheva (2022, 2023); Cinque (2023); Toquero-Pérez (2023, 2025).³⁶ What is more, the selectional feature on CARD accounts for why numerals are exclusively count noun modifiers: these nouns are the only nominal expressions that project Number. #### 8.2 A brief but important digression on size/shape adjectives The structural representation in (60) locates dimensional adjectives as adjuncts of the Number projection. This representation is consistent with the hypothesis put forth by Deal (2016, 2017): size/shape adjectives encode a lexical requirement on the constituent they modify and they are enabled by projections higher than the lowest nP. We can follow Deal, and assume that the lexical requirement is encoded via a presupposition on the adjective's individual argument along the lines in (61) for the adjective big. (61) $$[big] = \lambda x$$: $\exists x [P(x) \land *atom(x)] . \exists d [big(x) \ge d]$ $^{^{36}}$ Pancheva (2022, 2023) argues based on evidence from Bulgarian that Number may be represented twice in the structure of the NP: a low Number head above n and below numerals, as originally proposed by Ritter (1991), and a higher Number head above numerals, in the spirit of Sauerland (2003). 'The property of being big to a degree larger than d satisfied if x is in P and it is an atom or sum of atoms' Unmarked mass and plural mass nouns meet none of the two requirements: they have no atoms, because they are underspecified for individuation; and they have no room for adjunction outside the nP, because they are syntactically impoverished. Thus, modification by this class of adjectives is precluded. In addition, the structural height requirement receives support from the observation that (some) size/shape adjectives cross-linguistically require the presence of overt classifiers, whose distribution is sometimes paralleled to that of Number (e.g. Borer 2005a; Cowper and Hall 2014; Dékány 2021). Examples include Hungarian in (62) from or Teochew, Southern Min in (63). (62) Hungarian (Dékány 2021) - a. két nagy szem alma two big CL_{eye} apple 'two big apples' - b. * két szem nagy alma two CL_{eye} big apple Int. 'two big apples' - (63) Teochew, Southern Min - a. Hi sa go dua *(-go) gai tun that three CL big A.CL N.MOD candy 'those three big pieces of candy' - két vekni meleg kenyér two CL_{loaf} warm bread 'two warm loaves of bread' - d. * két meleg vekni kenyér two warm cL_{loaf} bread Int.: 'two warm loaves of bread' (adapted from Biggs and Zhuosi 2022) b. Hi sa go sio (* -go) gai tun that three CL hot A.CL N.MOD candy 'those three pieces of hot candy' The dimensional adjectives in Hungarian are lower than numerals and must precede the classifier: (62a) vs. (62b). Non-dimensional attributive adjectives like *meleg* 'warm' must follow the classifier: (62c) vs. (62d). Similarly, in Teochew, Southern Min dimensional adjectives require the obligatory presence of the classifier following the adjective, e.g. (63a); but non-dimensional adjectives are ungrammatical with the classifier, e.g. (63b).³⁷ There is an additional welcome consequence of representing adjectives as in (60), regarding classificatory adjectives. These adjectives are acceptable with mass nouns. In fact, when more than one adjective of this class co-occurs, the order is not fixed, as shown in (64). These facts can be accounted for under the assumption that there are no ordering restrictions between adjuncts of the same XP (Alexiadou 1997; Cinque 1999), i.e. nP in this case. - (64) a. Mineral sparkling water Sparkling mineral water - b. Agua gasificada mineral water carbonated mineral water mineral carbonated 'Carbonated mineral water' 'Mineral carbonated water' ³⁷Further support for the position that adjectives are NumP adjuncts is found in Toquero-Pérez (2023, 2025), who reports that in Alasha Mongolian (a group of) countable nouns that is unmarked for number are actually number neutral unless they are modified by size/shape adjectives. In fact, the presence of said adjectives signals a strictly singular interpretation. Toquero-Pérez proposes that this is because number neutral nouns, though individuated satisfying the presuppositional requirement of the adjective in (61), lack NumP making no room for the adjective to adjoin. Unmarked, yet underlyingly [sg], nouns do project NumP enabling size adjective modification. ## 8.3 The morpho-syntax of object mass nouns We are now in a position to address the syntax of object mass nouns and compare it to both count and the rest of mass nouns. I propose that the syntactic representation of object mass nouns is as in (65). (65) a. English: jewelry b. Spanish: *joyería* 'jewelry' Looking at the structures in (65), it is clear what these nouns share with the rest of mass nouns: they lack Number. However, unlike the rest of mass nouns, and like count nouns, they are (i) [IND]-marked and (ii) not syntactically impoverished, given the layered n suggests. The structural position of n[COLL] parallels that of Number: both Number and n[COLL] immediately c-command the n[IND]. Therefore the representation of count and mass nouns properly contains the countable base, as predicted by the containment hypothesis, shown in (66). (66) a. $$\{n[\text{IND}], \sqrt{\text{ROOT}}\} \subset \{\text{Number}, n[\text{IND}], \sqrt{\text{ROOT}}\}$$ b. $\{n[\text{IND}], \sqrt{\text{ROOT}}\} \subset \{n[\text{COLL}], n[\text{IND}], \sqrt{\text{ROOT}}\}$. The structural isomorphism between Number and n[COLL] explains why both Number and n[COLL] can both trigger allomorphy on the root, e.g. (41) and (42): the locality conditions for allomorphy are the exact same. In terms of affix ordering, [COLL]-exponents follow the nominalized root (i.e. root and any class markers), just like [PL]-exponents do, as illustrated schematically in (67)-(68). (67)a. $\sqrt{\text{ROOT}} - n[\text{IND}] - \text{Number}$ -Ø (singular count) arm -a (plural count) arm -a -S 'weapon(s)' b. $\sqrt{\text{ROOT}} - n[\text{IND}] - n[\text{COLL}]$ arm -a -mento (*object mass*) 'weaponry' (68)a. $\sqrt{\text{ROOT}} - n[\text{IND}] - \text{Number}$ -Ø (singular count) dogg -ie (plural count) dogg -ie b. $\sqrt{\text{ROOT}} - n[\text{IND}] - n[\text{COLL}]$ -ware dogg -ie Moreover, just like Number, this [COLL]-bearing head comes equipped with the merge-triggering feature $[\bullet IND \bullet]$. This feature must be checked-off immediately via merger of n's complement. Given that both (object mass) Number and n[COLL] have the same merge-triggering feature, we can account for the unacceptability of their co-occurrence: merger of n[COLL] will block merger of Number, and viceversa. Thus their overlapping distribution follows. This competition for merger is illustrated in (69). b. Merger of n[COLL] # (69) Satisfying [•IND•] Num [SG/PL] [•IND•] a. Competing for merger [•IND•] c. Merger of Number As illustrated in (69a), Number and n compete for merger. If n is merged, as in (69b), it will write off its selection feature and project nP, blocking merger of Number. The resulting vocabulary item is jewelry. If Number is merged instead, as in (69c), its selection feature will be discharged and NumP will be projected; this will result in the insertion of vocabulary item jewel(s). Attempting to iterate Number and n leads to a crash: only one of the two heads, i.e. the first-merged head, will be able to write its complementation feature off (Adger 2003; Heck and Müller 2007; Müller 2010). This is schematized in (70). (70) a. Merge(n, n) > *Merge(Num, n) b. Merge(Num, n) > *Merge(n, Num) By virtue of not having a NumP, many of the distributional properties of this class of nouns as mass follow. For instance, the obvious one is no singular/plural contrast. Second, neither of the determiners with the probing features in Table 7 are grammatical: while the D is able to value its [uind] feature, the Number features will remain unvalued causing the derivation to crash (Chomsky 2000). Third, numeral modification is expect to be disallowed as well. This fact follows from the idea that the CARD head, which introduces numerals in its specifier, requires complementation by Number. Since there is no Number, CARD cannot check off its [•Num•] feature under sisterhood, and the derivation crashes, as in (71). (71) Merge(n, n) > *Merge(CARD, n) The situation with size/shape adjectives is different from numerals. Size adjectives encode the lexical requirement that the NP they modify be countable (i.e. it has atoms in its extension) and their adjunction is dependent on their being a larger nominal structure than just *n*P. Both of these are satisfied for object mass nouns. Like count nouns, they are [IND]-marked, which enables the satisfaction of the lexical semantic requirement of the adjective, e.g. (61); and they not syntactically impoverished: they project an additional *n*P. That said and given the geometrical parallel with Number, I propose that size/shape adjectives adjoin to this layered *n*P, as illustrated in (72). # (72) the big metallic jewelry #### 8.4 What about the lexical gaps in count-object mass paradigms? One of the welcome results of the proposed analysis has been explaining the fact that the root morphemes that
participate in the class of object mass nouns also participate in the class of count nouns giving rise to the doublets given in section 4. This is expected under the containment hypothesis and the structural representations in which count and object mass nouns share the same root and n pairings. As mentioned when discussing doublets, there is one potential trade-off of adopting this decompositional account that relies on a nesting structure for containment: not every object mass noun has a count noun counterpart. This was most clearly seen in English with the example of *furniture*, *equipment* and *cutlery*. However, as mentioned in that section as well, which vocabulary items are missing can be a matter of idiosyncracy across languages, rather than large-scale systemic patterns. Similar idiosyncrasies with respect to the root's flexibility to appear in a count or a mass context are in fact not uncommon, which suggests that syntax may be involved (Deal 2017). In DM-style approaches, like the one adopted here, root-specific conditions are grammatically determined (by the output of the syntax). The question is then what allows the root to occur in one morpho-syntactic context (the object mass) but not the other (the count one). There are two potential reasons for why a root might not be licensed, i.e. paired up with the relevant terminal or sets of terminals (Harley and Noyer 1998, 1999, 2000; Acquaviva 2009; Harley 2014; Kramer 2015): a semantic condition, and a morpho-phonological one. The semantic condition entails that pairing up a root with a particular terminal leads to uninterpretability. In the case at hand, this would entail that a root like $\sqrt{\text{FURN}}$ will lead to a semantic crash if it occurs in the environment in (73). The ' \leftrightarrow ' is meant to indicate the mapping from structure to interpretation and '#' stands for 'no meaning'. (73) $$\sqrt{\text{FURN/EQUIP/CUT}} \leftrightarrow \#/_n[\text{IND}] \text{ Number[sg/pl]}$$ What the rule in (73) amounts to saying is that English speakers cannot compose a count meaning for these expressions. However, attributing these gaps to an inability to assign a certain meaning seems to miss the generalization that I have been attempting to capture all along: the representation, and by virtue of semantic compositionality, the meaning, of object mass nouns is built on the countable base of the noun. Instead, I hypothesize that the reason why there are lexical gaps in the paradigm is morpho-phonological: the relevant root cannot be mapped to an exponent at the point of Vocabulary Insertion in a particular context. This entails that, in those cases where there is an object mass noun but no count noun counterpart, the root can only be licensed in a nominal context where n[COLL] is present. For instance, a root like $\sqrt{\text{FURN}}$ may only be exponed in the contexts in (74). (74) a. $$\sqrt{\text{FURN}} \Leftrightarrow furnit/_n[IND]]n[COLL]]$$ furniture b. $\sqrt{\text{FURN}} \Leftrightarrow furnish/_v$ furnish If the contexts in (74) are not met, no vocabulary item will be able to be inserted. As Kramer (2015, p.54) notes, this way of thinking is very much in line with the Subset Principle: Vocabulary Insertion cannot proceed if (i) the target contains features that are not present in the syntactic derivation or (ii) the target does not occur in the relevant context specified by the rule.³⁸ Regarding variation, given the idiosyncrasy of what is an acceptable root-categorizer pairing, we do not expect the licensing conditions (xviii) a. $$[[XP] \sqrt{ROOT} n] Number D]$$ b. $\sqrt{GOOSE} n Number$ $\sqrt{GOOSE} \Leftrightarrow geesel_[PL]$ $\sqrt{GOOSE} \Leftrightarrow goose$ $n \Leftrightarrow \emptyset$ $[PL] \Leftrightarrow \emptyset/\sqrt{GOOSE}$ VI rules for the terminals in Cycle B ³⁸The rule in (74a) is what Moskal and Smith (2016) refer to as 'Hyper-Contextual' VI rule: it makes reference to multiple terminal nodes. One may wonder about the specificity of the rule and whether it is a conceptual and/or an empirical issue. I want to briefly comment here that it is not. First, any theory of allomorphy has to account for the observation that terminals like Number can trigger suppletion on the root despite 'not being strictly local. This can be cashed out by assuming a theory of cyclic spell-out (Chomsky 2000, 2001; Marantz 2001; Embick 2010): (a) *n* spells out its complement, if there is one, which does not include the root because roots are adjoined to *n* forming a complex head; (b) when a next cyclic head is merged (e.g. D or K if there is one within the DP, Matushansky 2005), its complement which includes the root, *n* and Number is spelled out; (c) the intervening terminal between the root and Number, in this case *n*, is a zero-morpheme which is pruned; and as a result Number can trigger allomorphy on the root. This is in line with Embick (2010), and it is schematically represented in (xviii). on roots to be universal across languages but largely idiosyncratic. While a root-categorizer pair may be available in language A (e.g. Spanish *muble*), the same combination may not be available in language B (e.g. English). This accounts for the variation in the types of gaps we might observe.³⁹ Pushing the licensing condition to the post-syntax, and in particular to the operation of Vocabulary Insertion, entails that certain combinations of (i) nominalizing features, (ii) number features, and (iii) the $\sqrt{\text{ROOT}}$ yield no vocabulary item resulting in a lexical gap. #### 9 Eventive object mass nouns and containment Up to this point, I have concentrated solely on object mass nouns with a 'collective' understanding (Lieber 2004, 2016; Alexiadou 2015); that is, those whose meaning could be paraphrased as something like 'a collection of X-related items', X being a placeholder for the what the nominalized root denotes. However, as I briefly noted in the introduction, the same object mass expression may also be understood eventively: *carpeting, lighting* or *alcantarillado* 'sewerage'. Grimshaw (1990), and subsequent work building on it (Borer 2005b; Alexiadou and Grimshaw 2008; Alexiadou 2009; Alexiadou et al. 2010), argued at length that these object mass expressions are argument-taking nominalizations whose base is an atelic VP. Some data are given in the examples in (75) for English and in (76) for Spanish. - (75) a. The {furnishing/lighting}(*-s) of the room for hours bothered Max. - b. The {frequent/intentional} lighting *(of the streets) for hours bothered the neighbors. - c. John's company did more lighting of Christmas trees than Mary's company did. CARDINALITY, #DURATION (76) a. { El alcantarillado/* lo-s alcantarillado-s} del barrio durante horas the.м sewerage the.м-pl sewerage-pl of.the neighborhood for hours The alternative is Moskal and Smith's (2016) who propose, in a nutshell, that allomoprhy on the root can occur as long as it is triggered by the terminal that immediately c-commands the cyclic head: if n is such a head, Number has then access to the root, which they formulate via VI rules that are hyper-context-sensitive. Given that the location of Number and n[COLL] is structurally identical the same logic applies here. I do not intend to adjudicate between the two proposals here; what I hope to have shown is that the structural description for the licensing of certain roots is not only empirically justified but it can be formalized within current theories of allomorphy. Whether it is preferable to do it via Hyper-Contextual VI rules or cyclic approach plus zero-morph exponence (or pruning) is something that I leave open. 39 It is also likely that some 'lexical' gaps in the count/mass domain are due to LF-licensing failures. For instance, being unable to express *blood* in English with a countable interpretation can be a such a case. This would account for why English speakers have trouble finding a container interpretation for a root like $\sqrt{\text{BLOOD}}$. This contrasts with roots like $\sqrt{\text{WATER}}$, which can be licensed in an individuated and non-individuated context. The licensing conditions on roots are schematized in (xix) for English. In contrast, in Nez Perce and Yudja, both $\sqrt{\text{WATER}}$ and $\sqrt{\text{BLOOD}}$ can be licensed in either context (Lima 2014; Deal 2017). In yet a third type of language like Alasha Mongolian, neither $\sqrt{\text{WATER}}$ nor $\sqrt{\text{BLOOD}}$ are LF-licensed in the individuated context (Toquero-Pérez 2023, 2025). ``` Syntax (xix) a. Form Root meaning at LF example water \Leftrightarrow [\sqrt{\text{WATER}} \ n] \leftrightarrow WATER-SUBSTANCE 'some water' 'a water' water \Leftrightarrow [\sqrt{\text{WATER}} \ n[\text{IND}]] \leftrightarrow \text{WATER-UNIT} b. Form Syntax Root meaning at LF example blood \Leftrightarrow [\sqrt{\text{BLOOD}} n] \leftrightarrow BLOOD-SUBSTANCE 'some water' blood \Leftrightarrow [\sqrt{\text{BLOOD}} n[\text{IND}]] \leftrightarrow \# 'a blood' ``` causó estragos. caused havoc.pl 'The sewerage(*-s) of the neighborhood for hours caused havoc' - b. El alcantarillado intencionado *(del barrio) durante horas the.m sewerage intentional of.the neighborhood for hours 'The intentional sewerage *(of the neighborhood) for hours' - c. Los romanos realizaron más alcantarillado de las ciudades que ninguna otra civilización the romans realized more sewerage of the cities than no other civilization 'The Romans did more sewerage of the cities than any other civilization did. CARDINLAITY, #VOLUME As the English and Spanish data illustrate, these event nominals are incompatible with overt plural marking, e.g. (75a) and (76a). Adjectival modifiers like *frequent* or *intentional* can target the eventive reading of the *-ing* or *-ado* nominal in (75a) and (76b). The sentences are reported to be grammatical only when their internal argument is overt.⁴⁰ Besides, when being compared, the interpretation that arises is a countable one, as
opposed to a non-countable one in (75c) and (76c). The impossibility to be marked plural and their measurability in terms of cardinality are hallmark properties of object mass nouns. I will refer to them as eventive object mass nouns. Other argument-taking event nominals, in contrast, behave like count nouns: they may be plural-marked and modified by numerals. This is shown in (77), (a-b) from Alexiadou et al. (2010, p.116). As count nouns, they are also countable, e.g (77d). - (77) a. The killing of the journalist(s) - b. The repeated killings of the unarmed civilians - c. There {were three killings/ was one killing} in the riots. - d. There were more killings in the 92 riots than in the 2020 ones. CARDINALITY, #DURATION A crucial difference between eventive object mass nouns in (75)/(76) and eventive count nouns in (77) is that the underlying VP-base of the latter is telic. For instance, as opposed to (75a) which allows the modifier *for an hour* signaling atelicity, (78) disallows it and only accepts *in one hour*, signaling telicity.⁴¹ (78) The killing of three journalists { in/*for} one hour shocked the world. Modulo the presence of an underlying VP shell, the patterns described for the eventive nouns, both object mass and count, are identical to the ones observed for the non-eventive nouns. Leaving aside the details of the different implementations, what the proposals for eventive object mass nouns generally have in common is the idea that object mass directly selects for the VP constituent as its complement. This is schematically translated into the current proposal as (79).⁴² ⁴⁰See Wood (2023, p.55) for more details. ⁴¹See Vendler (1967); Dowty (1979); van Geenhoven (2005) for diagnostics on telicity. $^{^{42}}$ I am omitting, but not neglecting, the possibility of there being additional verbal projections beside v (see Borer 2005b; Alexiadou and Grimshaw 2008; Alexiadou 2009; Alexiadou et al. 2010; Wood 2023, to name a few works). The structure in (79) seems to pose a challenge to the generalization that object mass nouns are formed on top of countable bases, which may lead to the rejection of the containment hypothesis. I want to briefly entertain two possibilities which are consistent with the generalizations about collective object mass nouns and which are predicted by the containment hypothesis. But, I do not intend to adjudicate between the two. In fact, languages might differ as to which option they instantiate. #### 9.1 v is [IND] With respect to the first possibility, it has long been observed that there exists a parallelism between count/mass NPs and telic/atelic VPs (Mourelatos 1978; Bach 1986a; Krifka 1989; Borer 2005a,b; van Geenhoven 2005; Wellwood et al. 2012). Telic parallels count and atelic mass; Number on NPs parallels grammatical aspect on VPs: perfective and progressive involve singular events whereas imperfective-habitual involves plural events. In addition, the grammatical properties of the NP/VP domain being measured affect the choice of dimension of measurement. These properties are summarized in Table 8, but see Wellwood et al. (2012) for more details. Table 8: Dimensions of measurement by NP and VP type | Bale and B | arner (2009): NP domain | Wellwood et al. (2012): VP domain | | | |-------------------------------------|-------------------------|-----------------------------------|--------------------------|--| | Type of NP Dimension of measurement | | Type of VP | Dimension of measurement | | | unmarked mass | VOLUME, WEIGHT | atelic (homogenous) | DURATION, DISTANCE | | | object mass | CARDINALITY | atelic (non-homogenous) | CARDINALITY | | | CT-PL | CARDINALITY | імрғ-telic | CARDINALITY | | | CT-SG | * | perf-telic | * | | These facts are relevant for the eventive object mass nouns. In particular, the parallelism between object mass nouns and atelic non-homogeneous activities may be indicative that their underlying syntax is rather similar. If so, just like ns can perform individuation in the nominal domain, so may vs in the verbal domain: $\{v[IND], n[IND]\}$. We can apply this line of reasoning to the deverbal nominalizations under discussion: the root is individuated by the v-head it adjoins to, and then the nominalizer selecting for $[\bullet IND\bullet]$ is merged on top of it. This is represented in (80). The structure in (80) is expected by the hypothesis that object mass nouns properly contain a countable base, i.e. a categorized root that is marked for individuation. In fact, the selectional properties of the n[COLL]-head are the same across the board (both for collective object mass and eventive ones): it requires that its complement be something marked for the feature [•IND•]. The mass properties, such as inability to be plural/singular marked and modification by numerals, follow because Number is not present. In addition, given the overlapping distribution of [COLL] and [SG/PL], this analysis may shed some light on why event nominals like those in (77) behave as count nouns: they project Number.⁴³ A structure like the one in (80) receives independent support from Greek, where the verbalizer (e.g. -o(n), -i(z)) and the nominalizer (e.g. -m, -s) are both marked overtly (Alexiadou 2011, 2015). The verbalizing morpheme is closer to the root than the nominalizing morpheme spelling out the collective feature. This is illustrated in (81). - (81) a. epipl-on-o, epipl-o-s-is furn-vbz-1sg furn-vbz-nmz-gen.fem 'to furnish, furniture' - b. end-i-o, end-i-s-is clothe-vbz-lsg clothe-vbz-nmz-gen.fem 'to clothe, clothing' (Alexiadou 2015, p.15) # 9.2 Beyond (base-generated) nesting So far we have only considered nesting as a possible instantiation of structural containment. However, Bobaljik (2012, p.57), and later on Dunbar and Wellwood (2016), notes that there are alternative structures that satisfy containment and differ in the labeling of projections as well as the linear order of terminal nodes. Let's suppose that the base structure of eventive object mass nouns is as in (82), ignoring selectional features and the label of node dominating the lower n and v heads. According to (82), the syntactic representation of eventive object mass nouns involve a countable base that is itself nominal. More specifically, the root is adjoined to an n-head that is marked for [IND]. This complex n-head is then merged with v. n[COLL] is merged higher, as discussed so far. One piece of evidence for the idea that the n and not the v is responsible for the categorization of the root may be found in the following observation by Kiparsky (1982), translated into DM by Arad (2003) and Anagnostopoulou and Samioti (2014, p.100) from who this quote is taken: "root-based formations do ⁴³A similar analysis is pursued by Alexiadou et al.'s (2010): eventive object mass nouns are marked [-count] and do not project NumP, while their count counterparts are [+count] and project NumP. not entail the existence of the corresponding nouns while noun derived ones do entail the existence of the corresponding nouns". The English eventive object mass cases under consideration seem to support the idea that the verbal meaning is noun derived. For instance, *to carpet* and *the carpeting (of the room)* entail there being a carpet (or presumably anything that the lexical semantics of the expression *carpet* picks out). Likewise, *to light* and *the lighting (of the room)* entail there being lights.⁴⁴ In the case of Spanish too, the verb to *alcantarillar* 'to lay sewers' and the eventive object mass noun *el alcantarillado (del barrio)* 'the sewerage of the neighborhood' both entail the existence of sewers. The question is whether this structure properly contains the countable base in the right way. I will show that there is a series of (independently motivated) assumptions that one could make, and that are compatible with the system developed here, which can lead to answering 'yes' to that question. Consequently, the analysis developed in the paper need not be changed. We can imagine that the operation of externally merging two heads as in (82) causes a labelling conflict (Chomsky 2013, 2015). Given the deverbal nature of the resulting expression, it seems intuitive to claim that v has to project. Under Chomsky's proposal, there are two ways v could project: either via feature sharing (selection or Agree) or via the movement of the sister to a higher projection. I will assume that neither n nor v select for each other, which requires probing the latter labeling option. To trigger movement, I will assume a slightly modified version of Adger's (2003) system: a terminal bearing the feature [*F*] not only triggers complementation by the category headed by F, but also its (head) movement.⁴⁵ In particular, In the case at hand, n[COLL] has the feature bundle in (83), where selectional features are ordered (Müller 2010). (83) $$n[\text{COLL}, *IND*, •v•]$$ The bundle in (83) consists of the interpretable feature [COLL], the (head-)movement triggering feature [*IND*] and the selectional feature [•v•] to be discharged after [*IND*] has been checked off. The derivation of the noun proceeds as in (84). #### (84) the derivation of eventive object mass nouns In (84), n[COLL] triggers the head movement of the [IND]-marked n. After head movement onto n[COLL], two things happen: the unlabelled node receives the label from v, and the [*IND*] feature on the hosting head is checked off (under sister-hood) with the moved constituent. n[COLL] then selects for v, thus discharging its second selectional feature and projecting n(P). This last step is the actual nominalization. With respect to containment, the branching structure in (84) is consistent with the Countable Base generalization and satisfies containment as well. The object mass morpheme is built on top of the countable base, i.e. root and the [IND]-marked categorizer. ⁴⁴See Borer (2014), however. ⁴⁵[*F*] acts like a 'strong' EPP feature in the sense of Chomsky (1995). An
interesting note about potential cross-linguistic variation is in order. While the syntactic structure and derivation in (84) could be instantiated by English and Spanish, it may not be available for Greek, which may instead instantiate (80). This is so because of two facts: (i) the morpheme ordering in (81) suggest that the nominalizing affix is further from the root than the verbalizer; and (ii) the Greek verbalizers -o(n), -i(z) do not give rise to the same entailment patterns reported for English (Anagnostopoulou and Samioti 2014). Therefore, we can hypothesize that languages might vary in the way that they build the structure for eventive object mass nouns: nesting as in (80) (e.g. Greek) or branching as in (84) (e.g. English/Spanish). ### 10 Cross-linguistic variation in the location of [COLL] Some crucial aspects of the proposal included disentangling individuation from number-marking as well as [COLL] from [PL]. In addition, I motivated an analysis for English and Spanish, with additional reference to Greek, that locates [COLL] in an outer nominalizer taking an [IND]-marked complement. The location of [COLL] in a nominalizer is not meant to be a universal claim about the syntactic position of this feature. After all, features may appear distributed along different heads in the extended projection within a single language or across languages. In fact, this is the situation with [PL] which may appear on Number or *n* in English and Spanish, Amharic (Kramer 2016) or Greek (Alexiadou 2011, 2015; Kouneli 2019), but also on D in languages like Persian (Ghomeshi 2003). Thus, it would not be surprising if something similar was observed for [COLL]. Given the similarities between [COLL] and [PL] on Number, it might be the case that [COLL] is located on the Number head giving rise to languages that have, potentially, [SG/PL/COLL] as part of their inventory of Number features. If that is the case, the theory I have developed makes the predictions in (85) regarding this possibility. - (85) If [COLL] is a Number feature, - a. only countable bases will bear this feature; and, - b. [COLL]-marked nouns will enable numeral modification. (85a) is expected under the containment hypothesis; and (85b) follows from the hypothesis that the head introducing numerals selects for Number. I will argue, based on data from Czech (Grimm and Docekal 2021), that the predictions are borne out. Grimm and Docekal (2021) report that in Czech a morpheme -i can be affixed to countable nominal bases resulting in an interpretation that refers to a 'collection of N'. The authors indicate that the morpheme -i has several allomorphs such as -ovi, which, as far as they are aware, make no semantic difference. The authors gloss -i, and its allomorphs, as 'i' but I will gloss it as 'COLL' to indicate its collective contribution to the meaning of the noun.⁴⁷ ⁴⁶The hypothesis that languages may vary as to whether they have an nesting or a branching structure has received support from the domain of comparatives where there are various ways, resembling the two alternatives here, of satisfying containment relations (Bobaljik 2012; Dunbar and Wellwood 2016). ⁴⁷I want to note the following: (i) Grimm and Docekal (2021) do not consistently gloss the gender on the -*i*-marked nouns; but according to Naughton (2005) nouns ending in -*i*, regardless of their countability, are generally neuter. See Grimm and Docekal (2021, p.92: ex.10b), included in this paper as (89). (ii) They do not always provide a complete morphological segmentation of the nouns and they do not always provide perfect minimal pairs. Based on their insights and those in Naughton's (2005) grammar, the examples have been adapted to provide minimal pairs when possible. The authors note that this morpheme is not very productive in the language and its distribution is restricted to a limited set of roots that also appear in count noun contexts.⁴⁸ Some singular count and collective-marked noun doublets from their sample are in (86). - (86) a. strom, strom-oví tree.m.sg tree-nt.coll '(a) tree, clump of trees' - b. list, list-í leaf.m.sg leaf-nt.coll '(a) leaf, foliage' - c. cihla, cihl-oví brick.f.sg brick-nt.coll '(a) brick, brickwork' All the unmarked count forms in (86) may be overtly marked plural with -y, regardless of whether they are masculine or feminine (Naughton 2005). This is shown in (87a). However, if the noun is collective - \hat{i} -marked then it cannot be subsequently plural-marked (Naughton 2005; Grimm and Docekal 2021). This contrast is illustrated in (87b) and (87c).⁴⁹ When the collective-marked noun has instrumental case, the plural allomorph -mi is ungrammatical in (87c). Instead, the unmarked instrumental case exponent must surface as in (87b). In this respect, the distribution of -i in Czech is very similar to the distribution of object mass markers in English: it attaches to a countable noun stem and it is in overlapping distribution with plural-marking. What is more, when describing the meaning of the -i-marked forms, Grimm and Docekal (2021, p.93) note the following: "the meanings of nouns derived by -i contrast strongly with ordinary plural meanings. [...] [T]he resultant meaning of nouns derived by -i is not simply a set of, for example, pine trees, but a set in which the members are coherently related". This semantic contribution resembles Corbett's (2000) cohesion of a group which I claimed underlies the meaning of the feature [coll]. The fact that -i-marking attaches to countable bases and is in overlapping distribution with plural-marking is expected under (85). However, it is not conclusive evidence that -i is spelling out a feature on Number as opposed to n. The crucial data come from complex numeral modification. Many Slavic - (xx) a. list, list-y leaf.m.sg.nom leaf-m.pL(.nom/instr) - b. žena, žen-y, žen-ami woman.f.sg.nom woman-f.nom.pl woman-f.instr.pl - c. umění, umění-mi art.nt.sg art.nt-instr.pl $^{^{48}}$ Grimm and Docekal (2021) surveyed a total of 22 -*i*-marked nouns, which, they claim in their footnote 5, comprise the majority of -*i*-marked nouns in the language. ⁴⁹The plural instrumental allomorph of masculine nouns is syncretic with the nominative plural -y. Only for some feminine or neuter nouns, the plural instrumental is -mi, see (xx), (b-c) from Naughton (2005): languages, Czech included, have simple cardinal numerals, but also morphologically derived complex cardinal numerals, e.g. Ionin and Matushansky (2018). The latter are used to talk about kinds, groups and collections. See the contrast in (88) taken from Grimm and Docekal (2021, p.94: ex.15). (88) a. tři námoříc-i three sailor-NOM.PL 'three sailors' simple cardinal numeral troj-ice námořík-ů three-group sailor-gen.pl 'a group of three sailors' complex cardinal numeral for groups Simple cardinal numerals like $t\check{r}i$ 'three' in (88a) are morphologically unmarked and, in the case of numerals 1-4, the NP they modify is nominative and plural-marked. When the numeral is morphologically marked with *-ice* as in (88b), (i) the NP is genitive and plural-marked, and (ii) the numeral root shows suppletion. Besides, complex cardinal numerals marked with *-ice* give rise to a group interpretation: 'a group of n-number of sailors'. Simple cardinals are ungrammatical as modifiers of -*i*-marked nouns, as (89) shows. However, Czech has another complex cardinal numeral which is marked -*oje* (for numerals 2-3) and -*ery* (for numerals above 3) and it translates as '2/3/4...collections'. We can call this numeral 'collective cardinal' and I gloss it as such (COLL.CARD). Crucially, collective cardinal numerals are grammatical with -*i*-marked nouns, but ungrammatical with plural-marked nouns such as *listy* 'leaves' as shown in (90), adapted from Grimm and Docekal (2021).⁵⁰ (89) a. dva list-y two.m leaf-m.pl 'two leaves' b. * dvě list-í Int.: 'two (sets of) foliage' two.nt leaf-nt.coll (90) a. ?? dv-oje list-y two-coll.card leaf-pl 'two sets of leaves' b. dv-oje list-ítwo-coll.card foliage-nt.coll'two sets of foliage' As the datapoint in (90b) illustrates, an -i-marked noun such as listi 'foliage' can be directly modified by a collective cardinal dvoje 'two (collective)'. This fact is what makes this subclass of nouns in Czech different from object mass nouns in English and Spanish. Under the proposal advanced in this paper, direct numeral modification is only possible if Number has been projected: CARD introducing numerals in its specifier bears a feature [\bullet Number \bullet]. The fact that -i-marked nouns in Czech can be directly modified by a numerals is strong evidence that the [COLL] feature is located on Number, as schematized in (91a). (xxi) ?? dv-oje stol-y two-coll.card table-pl 'two sets of tables' ⁵⁰As Grimm and Docekal (2021, p.97) put it: "In the case of nouns derived by -*i*, native speakers always prefer the use of the complex numeral over the simple cardinal numeral". They go on to further indicate that "applying -*oje* to nouns other than those denoting entities which are sets of individuals that typically come in groups or are connected to one another in some manner typically result in infelicities", e.g. (xxi). [COLL] is spelled out as l-il, and it surfaces on the noun, underspecified for gender (i.e. neuter). - oje on the numeral can be analyzed as the result of nominal concord between the numeral and the [COLL] feature on Number (Norris 2014; Ionin and Matushansky 2018). Plural-marked count nouns have a similar underlying structure but differ in the set of features that they bear on Number, e.g. (91b); as a result, a plural morpheme is exponed on the noun and no -oje surfaces on the numeral. In addition, the n bears a masculine gender feature, i.e. M. If we were to locate the feature on a layered n instead, as we did for English and Spanish, we would account for the overlapping distribution of [COLL] and [PL] but we would be left with no explanation as to why numerals
can modify [COLL]-marked nouns in Czech but not in English or Spanish. That said, we can conclude that the location of the [COLL] feature is subject to variation, just like [PL] is (Wiltschko 2021, for an overview): in some languages, it will be located on n, while in others it will be located on Number. This variation is summarized in Table 9.51 | | [PL] | | [coll] | | |---------|--------------|----------------|----------|--------| | | n | Number | n | Number | | English | √ | \checkmark | √ | * | | Spanish | \checkmark | \checkmark | ✓ | * | | Czech | _ | - √ | * | √ | Table 9: Variation in the distribution of [COLL] (and [PL]) # 11 Ruling out alternatives The count/mass distinction and its relation to countability has been the object of study of several theories of morpho-syntax. This section is meant to briefly review some influential proposals and to show that many of the empirical observations and generalizations discussed in the present paper pose non-trivial challenges for them. In particular, I will concentrate on three families of syntactic approaches within the traditional view: (i) the no Number approaches in Borer (2005a) and Cowper and Hall (2009, 2012), (ii) the feature-markedness approach in Cowper and Hall (2014) and (iii) the hybrid approach in Smith (2021). **#1: the no Number approaches.** An influential proposal is found in Borer (2005a) who argues that (a) nominal roots denote undivided matter (i.e. they are by default non-countable) and (b) in the absence of a dedicated functional head that performs division of such matter, her Div(ision), the NP will have a mass syntax and a non-countable interpretation. This is schematized in (92). (92) a. $$[_{DP} D [_{\#P} \# [_{DIvP} DIv [_{NP} N]]]]$$ = count b. $[_{DP} D [_{\#P} \# [_{NP} N]]]$ = mass ⁵¹It remains to be probed whether Czech has low plurals. That is why I use '-' on Table 9. For Borer, DIV is realized by plural-markers in languages like English or classifiers in languages like Chinese. Singular number, sometimes overtly realized as the indefinite determiner a, numerals and quantity determiners like much, many, more etc. are structurally above DIV, in what she labels # (for Quantity). Semantically, DIV introduces the basis for counting, e.g. atoms. That is, DIV has the same semantic effect as [IND] has in this paper. DIV is responsible for making NPs have a plural count syntax but it is also responsible for making NPs countable. However, there are a series of issues that Borer's system has to face. First, object mass nouns constitute a contradiction: on the one hand, they are mass and must thus lack DIV; on the other, like plural count nouns, they are countable which means they must have DIV. Second, if DIV is the locus of plural-marking, and this differs from the locus of singular-marking, we predict that a PL-marked noun may be subsequently singularized. This would be number system where a noun is overly marked for plural but triggers singular agreement and has a strictly singular interpretation. Toquero-Pérez (2025) argues that such system is yet to be attested in the world's languages. What is more, Harbour (2007, 2011), following Ritter (1991), shows that in languages that make a singular/plural distinction on count nouns, both [sg] and [PL] are located on the same head. Last but not least, amalgamating [PL] and [IND], as in DIV, entails that every plural-marked noun is count and countable. Once again, this is problematic for nouns that are plural, yet they are also mass and non-countable, e.g. plural mass. A slightly different version from Borer, but built on similar insights, is found in a series of papers by Cowper and Hall (2009, 2012). They propose a theory of Number that can account for the count/mass distinction. Like Borer, the crucial difference between count and mass NPs is the presence or absence of structure. In their case, the key syntactic piece is a Number head. Mass NPs lack Number while count NPs project Number. They propose a feature geometry according to which plural, i.e. [> 1], is entailed by what they call an individuator, i.e. [#]. Schematically, this looks like (93), where the ':' on the feature bundle indicates 'entailed by'. ``` (93) a. [_{DP} D [_{NumberP} [\#] [_{NP} N]]] = singular count b. [_{DP} D [_{NumberP} [\#: > 1] [_{NP} N]]] = plural count c. [_{DP} D [_{NP} N]] = mass d. [_{DP} D [_{NP} [\#] N]] = object mass ``` Their [#] feature in (93a) and (93b) acts as Borer's (2005a) divider, making the noun countable, and it is additionally in charge of singular-marking. Unlike Borer, plural itself does not perform individuation, but requires the NP to be already individuated and marked singular. They briefly address the situation of *furniture* by speculating that these nouns have the structure in (93d) where [#] is a modifier of the N node (in the spirit of Wiltschko 2008). This approach also falls under the umbrella of the 'traditional approach' where object mass nouns are lexically individuated via a low number feature. If this were the case for object mass nouns, however, we would still need to find an explanation for why Number and the object mass terminal are in overlapping distribution. As far as I know, the presence or absence of a modifier does not preclude the merger of a higher head. In addition, we would miss the generalization about the classes of roots that participate in both object mass and count nouns. The proposal suffers from similar issues as Borer's including the following: it is unclear what makes countable NPs form a natural class; and given that [>1] is dependent on [#], the system makes no room for plural mass nouns. #2: feature-markedness approach. Cowper and Hall (2014) propose a revised version of their earlier proposal. In their new system, singular count NPs are the most featurally unmarked NPs (i.e. uderspecified for any feature), while mass and plural count NPs form a natural class: they are both [Non-Atomic]. According to Cowper and Hall (2014, p.69), if a nominal lacks the feature [Non-Atomic] "it will be interpreted as atomic (i.e. contrastively *not* Non-Atomic) and thus as both count and singular". To further distinguish between mass NPs and plural count NPs they propose that the latter are also marked for a feature [Discrete]. The bundle [Non-Atomic: Discrete] spells-out plural -s. A schematic representation of the feature distribution is in (94) from Cowper and Hall (2014, p.69, ex: 10). [Non-Atomic] is in charge of introducing the property of cumulativity, something that both mass and plural count NPs share (Cheng 1973; Krifka 1989), and [Discrete] makes sure that the NP has separable individuals (i.e. atoms) that can be counted. While the bundling of mass and plural count nouns as a natural class is empirically justified, this is likely a semantic natural class (e.g. Krifka 1989; Deal 2016, 2017; Toquero-Pérez 2024). This new proposal does not solve any of the puzzles mentioned above. In the case of object mass nouns, they speculate that these NPs are lexically specified for [Non-Atomic], in a similar vein as their previous proposal. However, given that these NPs are countable, everything in their system suggests they must also be specified as [Discrete]. In that case, there would be nothing that formally distinguishes these nouns from plural count nouns. While plural mass nouns could be described as [Non-Atomic], this specification would not be enough (at least for English) for them to realize plural-marking: -s in their system realizes the bundle [Non-Atomic: Discrete]. Again, by further marking them as [Discrete], we incorrectly predict that they are indistinguishable from plural count nouns. We should note as well that this approach suffers from the possible types of determiners one might encounter cross-linguistically. As illustrated in this paper, and also in Chierchia (1998a), there are determiners that select for singular count nouns (e.g. *every*, *each*, *cada*). The approach by Cowper and Hall (2014) undergenerates by not predicting the existence of this class: given that singular count NPs are featurally unmarked, singular count nouns may only occur with determiners that are unrestricted with respect to the count mass distinction. #3: the hybrid approach. Unlike the other two approaches that conflate Number-marking and Individuation-marking, Smith (2021) proposes a separation of the two. Building on insights from Borer (2005a) individuation is taken to be the presence of a binary feature [±division]. Unlike Borer, and like Bale and Barner (2009), this feature is located on the nominalizer that the root combines with. Count nouns have the structure in (95a) and mass nouns, unmarked and plural, the one in (95b). Note that they only differ in the feature specification of the nominalizer, but they both project Number which may contain interpretable or uninterpretable features. (95) a. $$[_{DP} D [_{NumberP} Number[sg/PL] [_{nP} n[+div] \sqrt{BOOK}]]]$$ = singular/plural count b. $[_{DP} D [_{NumberP} Number[\emptyset/PL] [_{nP} n[-div] \sqrt{BLOOD/ FUME}]]]$ = mass The representation of object mass nouns that Smith proposes is as in (96). As it can be observed, it differs from (95b) in several major respects: the nominalizer that the roots $\sqrt{\text{FURNITURE}}$, $\sqrt{\text{JEWELRY}}$ or $\sqrt{\text{EQUIPMENT}}$ combine with is [+div]; the nominalizer also bears an interpretable [*i*PL] feature which has no PF correlate at the point of VI; and Number is not part of the structure. (96) $$[_{DP} D [_{nP} n[+div, iPL] \sqrt{FURNITURE}]]$$ = object mass Smith's proposal is insightful in that it explicitly divides the labor between individuation and number-marking. One of the welcome consequences of separating Number from individuation is the ability to capture the fact that object mass nouns and count nouns are members of the the natural class of countable things. However, it suffers from non-trivial challenges as
well. First, with respect to object mass nouns, while the [+div] nominalizer is responsible for ensuring a countable interpretation on the root, calling the low interpretable feature [PL] is not justified, as I argued. What is more, Smith assumes that while interpretable, said plural feature is both syntactically inactive for the purposes of agreement – which is why these nouns never control plural agreement DP-internally or externally – and also semantically unmarked, i.e. an identity function, in the sense of Sauerland (2003); Bale et al. (2011). In other words, there is nothing interpretable about it. The proposal does not derive the overlapping distribution of object mass-marking and plural-marking either. The account needs to stipulate that Number cannot occur with nominalized elements that are inherently marked for number. Since the root in (96) is inherently number-marked via the [ipL] on n, the Number head cannot be part of the derivation. More generally, the prospect of mass nouns projecting Number obscures the possibility of establishing different natural classes in the domain of count and mass nouns. The class of count nouns is composed of [+div]-marked and Number-marked NPs, but there is no natural class that can be established for all subtypes of mass nouns: some may be [-div]-marked but Number-marked (unmarked mass and plural mass), whereas others may be [+div]-marked and have no Number (i.e. object mass nouns). Not only is this descriptively inadequate, but also explanatorily so. ### 12 Broader implications: nominal architecture, countability and variation The core of this paper has been concerned with object mass nouns and how they fit the different natural classes instantiated by the count/mass distinction and the countable/non-countable distinction. The challenge of these nouns is twofold: how can we ensure a mass distribution and at the same explaine their overlapping properties with count nouns? A possibility is that these nouns have are specified as countable (and plural) in the lexicon but enter a mass syntax frame, barring any subsequent count properties. However, I have I argued at length that there is nothing lexically special about this subclass of nouns, and that instead their intersective properties with both mass and count are determined by the syntax. I have then outlined a theory of the count/mass distinction that accounts for the object of study as well as the other subclasses of nouns. I started by motivating the generalization that count nouns and object mass nouns share a countable base supported by the availability of doublets. Either Number or the OBJECT MASS terminal may attach to such base, leading to the conclusion that these terminals are in overlapping distribution. I proposed that the representations of object mass nouns and count nouns properly contain a countable base. This entails that just like in the case of count nouns [SG/PL] cannot merge directly with the root terminal, neither can [COLL] responsible for deriving object mass nouns. I then provided evidence that this containment relation could be satisfied in different ways, which may themselves be subject to cross-linguistic variation. While overlapping in their distribution, I made the case that [COLL] and [SG/PL] features in object mass and count nouns are located on different terminals: the former is hosted in a nominalizer in English and Spanish (and also Greek, Alexiadou 2011, 2015); the latter are on Number. The two terminals are, however, in competition for merger with each other to satisfy their complementation requirement, i.e. an [IND]-marked complement. This novel analysis does not only account for distributional differences between mass nouns and count nouns, but it is particularly insightful for the object mass/count distinction. It accounts for their similarities (e.g. many doublets, the possibility of root-allomorphy, and the enabling of adjectival modification across both classes) while accounting for the differences (e.g. the lack of overt plural-marking and ungrammaticality with numerals for object mass nouns). While lacking Numbe, object mass nouns are [IND]-marked; It is this property that makes object mass nouns and count nouns form a natural class with respect to countability. Thus, I propose the following hypothesis in (97). ### (97) The Countability Hypothesis Being countable means being marked for individuation in the syntax. The hypothesis is very much in line with Deal's (2016; 2017) conclusion that what determines whether a root has, or does not have, discrete individuals that can be counted is syntactically determined. Building on Deal's insights, i.e. every language makes a countability distinction, regardless of whether it makes an overt count/mass distinction, I take [IND] to be a universally grammaticalized feature, in the sense of Guardiano and Longobardi (2016). This feature is part of UG's universal feature inventory: roots within every language, and across languages, will differ with respect to whether they have been [IND]-marked or not by the categorizer. The learner's task is to determine the syntactic conditions under which the root has been or can be licensed (at PF and LF). That said, we can establish a formal typology of noun classes based on their underlying features. This is shown in the decision tree in Figure 2, where variation is stated in terms of "yes/no" questions.⁵² ⁵²As Roberts (2019, p.6) indicates when talking about parameters for variation, "this is an essentially expository move, but it has the advantage of making their binary nature clear, and it reminds us that the parametric options represent ways in which the child interrogates the [Primary Linguistic Data]". The hypothesis in (97) provides an understanding of what countability is, and how it is different from the property of being count. Looking at Figure 2, nouns that are unmarked for [IND] are non-countable, whereas all the nouns that are marked for [IND] are countable, regardless of whether they are count or mass. In fact, it is possible that a noun does not project Number and yet it is countable: object mass nouns and unmarked number neutral nouns, e.g. unmarked inanimates in Alasha Mongolian (Toquero-Pérez 2025).⁵³ Therefore, the hypothesis correctly predicts that count NPs are a subset of the NPs that are countable: {count NPs} \subset {unmarked number neutral NPs, count NPs, object mass NPs}. Besides, there seems to be (i) a correlation between being count and being countable that I describe in the generalization in (98) and (ii) a generalization regarding plural marking, based on the availability of plural mass, that I describe in (99). In fact, the generalization in (99) provides support for the separation of number and individuation features that I have motivated in the paper. ## (98) The Count-Countability Generalization Being count entails being countable, but being mass does not entail being non-countable. ## (99) The PL-Marking Count Generalization Plural-marking on the noun need not entail count syntax. Last but not least, I want to address two points concerning variation. First, the proposal can accommodate variation in the properties of [COLL]-marked nouns, such as the possibility of numeral modification as in Czech: [COLL] is actually a Number feature in these languages. As a result of there being Number, the functional head that hosts numerals can be merged. This adds to our knowledge that features may appear distributed along the nominal spine. In this regard, we can conclude that the variation is located in the syntax. We have also seen cases where variation may be much less systematic; at times, said variation is restricted to the vocabulary items that can be found in a particular context. This seems to vary, by and large, on a language-by-language basis. Such was the case of lexical gaps in the paradigm of English doublets, and the environments where certain roots may be licensed (e.g. count-to-mass and mass-to-count 'shifts'). The proposal that I have developed here provides an answer for such variation and for the existence of those gaps: it is syntactically conditioned lexical variation. In other words, it results from the way that the syntax puts terminal nodes together in concert with the satisfaction of the different requirements at the interfaces (both PF and LF). #### References Abney, S. (1987). The English Noun Phrase in its Sentential Aspect. PhD thesis, MIT. Acquaviva, P. (2008). *Lexical Plurals: A Morphosemantic Approach*. Oxford studies in theoretical linguistics. Oxford University Press, Oxford, UK. Acquaviva, P. (2009). Roots and lexicality in distributed morphology. *York Essex Morphology Meeting*, 2:1–21. ⁵³Other examples of languages with countable number neutral nouns unmarked for Number might include Amhraic (Kramer 2017), Buriat (Bylinina and Podobryaev 2020), Haitian Creole (Déprez 2005), Hungarian (Farkas and de Swart 2010), or Western Armenian (Bale et al. 2011). - Acquaviva, P. (2016). Linguistic plurality and the conceptualization of part structure. In Carrara, M., Arapinis, A., and Moltmann, F., editors, *Unity and Plurality: Logic, Philosophy, and Linguistics*, pages 194–218. Oxford University Press. - Adger, D. (2003). Core Syntax. Oxford University Press, Oxford. - Alexiadou, A. (1997). Adverb Placement: A Case Study in Antisymmetric Syntax. John Benjamins, Amsterdam. - Alexiadou, A. (2004). Inflection class, gender and dp-internal structure. In Müller, G., Gunkel, L., and Zifoun, G., editors, *Explorations in Nominal Inflection*, pages 21–50. Mouton, Berlin. - Alexiadou, A. (2009). On the role of syntactic locality in morphological processes: The case of Greek nominals. In Giannakidou, A. and Rathert, M., editors, *Quantification*, *Definiteness*, *and Nominalization*, pages 253–280, Oxford. Oxford University Press. - Alexiadou, A. (2011). Plural mass nouns and the morpho-syntax of number. In Washburn, M. B., McKinney-Bock, K., Varis, E.,
Sawyer, A., and Tomaszewicz, B., editors, *West Coast Conference in Formal Linguistics (WCCFL)* 28, pages 33–41, Somerville, MA. Cascadilla Proceedings Project. - Alexiadou, A. (2015). Deriving fake mass nouns. In Bui, T. and Özyildiz, D., editors, *North East Linguistic Society (NELS)* 45, pages 11–24, Amherst, MA. GLSA. - Alexiadou, A. and Grimshaw, J. (2008). Verbs, nouns and affixation. In Shäfer, F., editor, *SinSpeC* (1): Working Papers of the SFB 732, pages 1–16. University of Stuttgart. - Alexiadou, A., Haegeman, L., and Stavrou, M. (2007). *Noun Phrase in the Generative Perspective*. Mouton de Gruyter, Berlin. - Alexiadou, A., Iordăchioaia, G., and Soare, E. (2010). Plural marking in argument supporting nominalizations. In Cabredo Hofherr, P. and Laca, B., editors, *Layers of Aspect*, pages 1–22. CSLI Publications, Stanford, CA. - Anagnostopoulou, E. and Samioti, Y. (2014). Domains within words and their meanings: A case study. In Alexiadou, A., Borer, H., and Shäfer, F., editors, *The Syntax of Roots and the Roots of Syntax*, pages 81–111. Oxford University Press, Oxford. - Arad, M. (2003). Locality constraints on the interpretation of roots: The case of Hebrew denominal verbs. *Natural Language and Linguistic Theory*, 21:737–778. - Bach, E. (1986a). The algebra of events. *Linguistics and Philosophy*, 9:5–16. - Bach, E. (1986b). Natural language metaphysics. In Barcan Marcus, R., Dorn, G. J., and Weingartner, P., editors, *Logic, Methodology and Philosophy of Science VII*, pages 573–595. Elsevier Science, Amsterdam. - Bale, A. (2016). Sentential oddities and the mass-count distinction: Do colourful ideas sleep calmly? Unpublished Ms. Concordia University. https://ling.auf.net/lingbuzz/003102. - Bale, A. and Barner, D. (2009). The interpretation of functional heads: Using comparatives to explore the mass/count distinction. *Journal of Semantics*, 26:217–252. - Bale, A., Gagnon, M., and Khanjian, H. (2011). Cross-linguistic representations of numerals and number marking. In Li, N. and Lutz, D., editors, *Proceedings of Semantics and Linguistic Theory (SALT) 20*, pages 582–598, Cornell University. CLC Publications. - Bale, A. and Gillon, B. (2020). Re-examining the mass-count distinction. In Moltmann, F., editor, *Mass and Count in Linguistics, Philosophy and Cognitive Science*, pages 13–36. John Benjamins, Amsterdam. - Bale, A. and Reiss, C. (2018). *Phonology: A Formal Introduction*. MIT Press, Cambridge, MA. - Biggs, A. and Zhuosi, L. (2022). Adjective classifiers in Shantou Teochew. In Kim, S., Kurtz, N., Hewett, M., and Kasper, C., editors, *Chicago Linguistic Society (CLS)* 56, pages 25–36, Chicago Linguistic Society. - Bloomfield, L. (1933). Language. Henry Holt, New York. - Bobaljik, J. (2012). *Universals in Comparative Morphology*. MIT Press, Cambridge, MA. - Bobaljik, J. and Harley, H. (2017). Suppletion is local: Evidence from Hiaki. In Newell, H., Noonan, M., Piggott, G., and Travis, L., editors, *The Structure of Words at the Interfaces*, pages 141–159. Oxford University Press, UK. - Bochnak, R. and Matthewson, L., editors (2015). *Methodologies in Semantic Fieldwork*. Oxford University Press, New York. - Bochnak, R. and Matthewson, L. (2020). Techniques in complex semantic fieldwork. *Annual Review of Linguistics*, 6:261–283. - Borer, H. (2005a). Structuring Sense, volume 1: In Name Only. Oxford University Press, Oxford. - Borer, H. (2005b). Structuring Sense, volume 2: The Normal Course of Events. Ohio State University. - Borer, H. (2014). The category of roots. In Alexiadou, A., Borer, H., and Shäfer, F., editors, *The Syntax of Roots and the Roots of Syntax*, pages 112–148. Oxford University Press, Oxford. - Bunt, H. (1979). Ensembles and the formal semantic properties of mass terms. In Pelletier, J., editor, *Mass Terms: Some Philosophical Problems*, pages 249–277. Reidel, Dordrecht. - Bunt, H. (1985). Mass Terms and Model-Theoretic Semantics. Cambridge University Press, New York. - Bylinina, L. and Podobryaev, A. (2020). Plurality in Buriat and structurally constrained alternatives. *Journal of Semantics*, 37:117–128. - Cheng, C.-Y. (1973). Response to Moravscik. In Hintikka, J., Moravcsik, J., and Suppes, P., editors, *Approaches to Natural Language*, volume 49, pages 286–288. Synthese Library, Springer, Dordrecht. - Chierchia, G. (1994). Syntactic bootstrapping and the acquisition of noun meanings: The mass-count issue. In Lust, B., Suñer, M., and Whitman, J., editors, *Syntactic Theory and First Language Acquisition: Crosslinguistic Perspectives*, pages 301–318. Lawrence Erlbaym Associates, Mahwah, NJ. - Chierchia, G. (1998a). Plurality of Mass Nouns and the Notion of "Semantic Parameter". In Rothstein, S., editor, *Events and Grammar*, pages 53–104. Kluwer Academic Publishers. - Chierchia, G. (1998b). Reference to kinds across languages. *Natural Language Semantics*, 6(4):339–405. - Chierchia, G. (2010). Mass nouns, vagueness and semantic variation. Synthese, 174:99–149. - Chierchia, G. (2021). Mass vs. count: Where do we stand? outline of a theory of semantic variation. In Kiss, T., Pelletier, J., and Husić, H., editors, *Things and Stuff: The Semantics of the Mass-Count Distinction*, pages 21–54. Cambridge University Press, Cambridge. - Chomsky, N. (1995). The Minimalist Program. MIT Press, Cambridge, MA. - Chomsky, N. (2000). Minimalist inquiries: the framework. In Martin, R., Michaels, D., and Uriagereka, J., editors, *Step by Step: Essays on Minimalist Syntax in Honor of Howard Lasnik*, pages 89–156. MIT Press, Cambridge, MA. - Chomsky, N. (2001). Derivation by phase. In Kenstowicz, M., editor, *Ken Hale: A Life in Linguistics*, pages 1–52. MIT Press, Cambridge, Massachusetts. - Chomsky, N. (2008). On Phases. In Freidin, R., Otero, C., and Zubizarreta, M. L., editors, *Foundational Issues in Linguistic Theory: Essays in Honor of Jean-Roger Vergnaud*, pages 133–166. MIT Press, Cambridge, MA. - Chomsky, N. (2013). Problems on Projection. *Lingua*, 130:33–49. - Chomsky, N. (2015). Problems of projection: Extensions. In Domenico, E. D., Hamann, C., and Matteini, S., editors, *Structures, Strategies and Beyond*, pages 3–16. John Benjamins Publishing Company, Amsterdam and Philadelphia. - Cinque, G. (1999). *Adverbs and Functional Heads: A Cross-linguistic Perspective*. Oxford University Press, New York. - Cinque, G. (2005). Deriving Greenberg's Universal 20 and its exceptions. *Linguistic Inquiry*, 36:315–332. - Cinque, G. (2010). The Syntax of Adjectives. MIT press, Cambridge, MA. - Cinque, G. (2023). On Linearization. MIT Press, Cambridge, MA. - Cohen, D. (2020). Activewear and other vaguery: A morphological perspective on aggregate-mass. In Moltmann, F., editor, *Mass and Count in Linguistics, Philosophy and Cognitive Science*, pages 37–60. John Benjamins Publishing Company. - Coon, J. and Keine, S. (2021). Feature Gluttony. Linguistic Inquiry, 52:655–710. - Corbett, G. (2000). Number. Cambridge University Press. - Corver, N. (1990). The Syntax of Left Branch Extractions. PhD thesis, Katholieke Universiteit Brabant. - Cowper, E. (2005). A note on Number. *Linguistic Inquiry*, 36:441–445. - Cowper, E. and Hall, D. C. (2009). Argumenthood, pronouns, and nominal feature geometry. In Ghomeshi, J., Paul, I., and Wiltschko, M., editors, *Determiners: Universals and Variation*, pages 97–120. John Benjamins, Amsterdam. - Cowper, E. and Hall, D. C. (2012). Aspects of individuation. In Massam, D., editor, *Count and Mass across Languages*, pages 27–53. Oxford University Press, Oxford, UK. - Cowper, E. and Hall, D. C. (2014). The features and exponence of nominal number. *Lingue e Linguaggio*, 13:63–82. - De Belder, M. (2013). Collective mass affixes: when derivation restricts functional structure. *Lingua*, 126:32–50. - Deal, A. R. (2016). Do all languages make countability distinctions? evidence from Nez Perce. In Bade, N., Berezovskaya, P., and Schöller, A., editors, *Sinn und Bedeutung 20*, pages 180–197, University of Konstanz. - Deal, A. R. (2017). Countability distinctions and semantic variation. *Natural Language Semantics*, 25:125–171. - Dékány, É. (2021). *The Hungarian Nominal Functional Sequence*. Studies in Natural Language and Linguistic Theory. Springer. - Déprez, V. (2005). Morphological number, semantic number and bare nouns. *Lingua*, 115:857–833. - Doetjes, J. (1997). *Quantifiers and Selection: On the Distribution of Quantifying Expressions in French, Dutch and English.* Holland Academic Graphics, The Hague. - Doetjes, J. (2021). Count–mass asymmetries: The importance of being count. In Kiss, T., Pelletier, J., and Husić, H., editors, *Things and Stuff: The Semantics of the Mass-Count Distinction*, pages 81–114. Cambridge University Press. - Dowty, D. (1979). Word Meaning and Montague Grammar: The Semantics of Verbs and Times in Generative Semantics and in Montague PTQ. Studies in Linguistics and Philosophy. Reidel Publishing Company, Dordrecht. - Dunbar, E. and Wellwood, A. (2016). Addressing the two interface problem. *Glossa: a journal of general linguistics*, 1:1–29. - Embick, D. (2007). Blocking Effects and analytic/synthetic alternations. *Natural Language and Linguistic Theory*, 25(1):1–37. - Embick, D. (2010). *Localism versus Globalism in Morphology and Phonology*. MIT Press, Cambridge, MA. - Embick, D. (2015). *The Morpheme: A Theoretical Introduction*. Interface Explorations. Mouton de Gruyter. - Embick, D. and Marantz, A. (2008). Architecture and blocking. *Linguistic Inquiry*, 39:1–53. - Embick, D. and Noyer, R. (2001). Movement operations after syntax. *Linguistic Inquiry*, 32:555–595. - Fábregas, A. (2013). Diminutives as heads or specifiers: The mapping between syntax and phonology. *Iberia: An International Journal of Liquistics*, 5:1–44. - Fábregas, A. (2017). The syntax and semantics of nominal modifiers in Spanish: interpretations, types and ordering facts. *Borealis: An International Journal of Hispanic Linguistics*, 6:1–102. - Farkas, D. and
de Swart, H. (2010). The semantics and pragmatics of plurals. *Semantics and Pragmatics*, 3:1–54. - Folli, R. and Harley, H. (2020). A Head Movement Approach to Talmy's Typology. *Linguistic Inquiry*, 51:425–470. - Ghomeshi, J. (2003). Plural marking, indefiniteness, and the noun phrase. *Studia Linguistica*, 57:47–74. - Gillon, B. (1992). Towards a common semantics for English count and mass nouns. *Linguistics and Philosophy*, 15:597–639. - Gillon, B. (2012). Mass terms. *Philosophy Compass*, 7:712–730. - Gouskova, M. and Bobaljik, J. (2022). The lexical core of a complex functional affix: Russian baby diminutive *-onok*. *Natural Language and Linguistic Theory*, 40:1075–1115. - Gribanova, V. (2022). Managing data in a formal syntactic study of an under-investigated language (Uzbek). In Berez-Kroeker, A., McDonnell, B., Koller, E., and Collister, L., editors, *The Open Hand-book of Linguistic Data Management*, pages 513–521. MIT press, Cambridge, MA. - Grimm, S. and Docekal, M. (2021). Counting aggregates, groups and kinds: Countability from the perspective of a morphologically complex language. In FIlip, H., editor, *Countability in Natural Language*, pages 85–120. Cambridge University Press, Cambridge. - Grimshaw, J. (1990). Argument Structure. MIT Press, Cambridge, Massachusetts. - Guardiano, C. and Longobardi, G. (2016). Parameter theory and parametric comparison. In Roberts, I., editor, *The Oxford Handbook of Universal Grammar*, pages 377–398. Oxford University Press, Oxford. - Gutiérrez-Rexach, J. (2001). The semantics of Spanish plural existential determiners and the dynamics of judgment types. *Probus*, 13:113–154. - Halle, M. and Marantz, A. (1993). Distributed Morphology and the pieces of inflection. In Hale, K. and Keyser, S. J., editors, *The View from Building 20*, pages 111–176. MIT Press, Cambridge, MA. - Harbour, D. (2007). *Morphosemantic Number: From Kiowa Noun Classes to UG Number Features*. Studies in Natural Language and Linguistic Theory. Springer. - Harbour, D. (2009). Mass, non-singularity, and augmentation. In Halpert, C., Hartman, J., and Hill, D., editors, *Workshop in Greek Syntax and Semantics at MIT* (2007), volume 57, pages 349–360. MIT Working Papers in Linguistics. - Harbour, D. (2011). Valence and atomic number. Linguistic Inquiry, 42:561–594. - Harley, H. (2005). One-replacement, unaccusativity, acategorial roots, and Bare Phrase Structure. In Gorbachov, S. and Nevins, A., editors, *Harvard Working Papers on Linguistics* 11, pages 59–78. - Harley, H. (2009). Compounding in Distributed Morphology. In Lieber, R. and Stekauer, P., editors, *Oxford Handbook of Compounding*, pages 129–144. Oxford University Press. - Harley, H. (2014). On the identity of roots. *Theoretical Linguistics*, 40:225–276. - Harley, H. and Noyer, R. (1998). Licensing in the non-lexicalist lexicon: Nominalizations, vocabulary items and the encyclopaedia. *MIT Working Papers in Linguistics*, 32:119–137. - Harley, H. and Noyer, R. (1999). Distributed morphology (state-of-the-article). *Glot International*, 4:3–9. - Harley, H. and Noyer, R. (2000). Formal versus encyclopedic properties of vocabulary: evidence from nominalisations. In Peeters, B., editor, *The Lexicon-Encyclopedia /interface*, pages 349–374. Elsevier, New York. - Harley, H. and Ritter, E. (2002). Person and number in pronouns: A feature geometric analysis. *Language*, 78:482–526. - Harris, J. (1991). The exponence of gender in Spanish. *Linguistic Inquiry*, 22:27–62. - Heck, F. and Müller, G. (2007). Extremely local optimization. In Brainbridge, E. and Agbayani, B., editors, *West Coast Conference in Formal Linguistics (WCCFL) 34*, pages 170–182. Cascadilla Proceedings Project. - Ionin, T. and Matushansky, O. (2018). *Cardinals: The Syntax and Semantics of Cardinal-Containing Expressions*. MIT Press, Cambridge, MA. - Kibrik, A. E. (2017). *The Methodology of Field Investigations in Linguistics: Setting up the Problem.* Walter de Gruyter. - Kiparsky, P. (1973). "Elsewhere" in Phonology. In Anderson, S. and Kiparsky, P., editors, *A Festschrift for Morris Halle*, pages 93–106. Holt, Rinehart and Winston, New York. - Kiparsky, P. (1982). From Cyclic Phonology to Lexical Phonology. In van der Hulst, H. and Smith, N., editors, *The Structure of Phonological Representations*, pages 131–175. Foris, Dordrecht. - Kouneli, M. (2019). Plural marking on mass nouns: Evidence from Greek. In Mathieu, E., Dali, M., and Zareikar, G., editors, *Gender and Noun Classification*, pages 233–249. Oxford University Press, Oxford, UK. - Kouneli, M. (2021). Number-based noun classification: The view from Kipsigis. *Natural Language and Linguistic Theory*, 39:1195–1251. - Kramer, R. (2015). The Morphosyntax of Gender. Oxford University Press. - Kramer, R. (2016). A split analysis of plurality: Number in Amharic. *Linguistic Inquiry*, 47:527–599. - Kramer, R. (2017). General number nouns in Amharic lack NumP. In Ostrove, J., Kramer, R., and Sabbagh, J., editors, *Asking the Right Questions: Essays in Honor of Sandra Chung*, pages 39–54. Linguistics Research Center, UC Santa Cruz. - Krifka, M. (1989). Nominal reference, temporal constitution and quantification in event semantics. In Bartsch, R., van Benthem, J., and van EmbdeBoas, P., editors, *Semantics and Contextual Expression*, pages 75–115. CSLI Publications, Standord, CA. - Kučerová, I. (2018). ϕ -features at the syntax-semantics interface: Evidence from nominal inflection. Linguistic Inquiry, 49:813–845. - Lieber, R. (2004). Morphology and Lexical Semantics. Cambridge University Press. - Lieber, R. (2016). English Nouns: The Ecology of Nominalization. Cambridge University Press. - Lima, S. (2014). *The Grammar of Individuation and Counting*. PhD thesis, University of Massachusetts, Amherst. - Link, G. (1983). The logical analysis of plurals and mass terms: A lattice-theoretical approach. In Bäuerle, R., Schwarze, C., and von Stechow, A., editors, *Meaning, Use and Interpretation of Language*, pages 302–323. De Gruyter, Berlin. - Marantz, A. (1997). No escape from syntax: Don't try morphological analysis in the privacy of your own lexicon. In Dimitriadis, A., Siegel, L., Surek-Clark, C., and Williams, A., editors, *University of Pennsylvania Working Papers in Linguistics*, pages 201–225. University of Pennsylvania. - Marantz, A. (2001). Words and things. Handout of talk given at MIT. - Marantz, A. (2013). Locality domains for contextual allomorphy across the interfaces. In Matushansky, O. and Marantz, A., editors, *Distributed Morphology Today: Morphemes for Morris Halle*, pages 95–115. MIT Press. - Martí, L. (2008). The semantics of plural indefinites in Spanish and Portuguese. *Natural Language Semantics*, 16:1–37. - Martí, L. (2015). The morphosemantics of Spanish indefinites. In D'Antonio, S., Moroney, M., and Little, C.-R., editors, *Semantics and Linguistic Theory (SALT)* 25, pages 576–594. LSA and CLC Publications. - Mathieu, E. (2012). Flavors of division. *Linguistic Inquiry*, 43:650–679. - Mathieu, E. and Dali, M. (2021). A Theory of Distributed Number. John Benjamins, Amsterdam. - Matthewson, L. (2004). On the methodology of semantic fieldwork. *International Journal of American Linguistics*, 70:369–415. - Matushansky, O. (2005). Going through a phase. In McGinnis, M. and Richards, N., editors, *Perspectives on phases*, pages 151–81. MIT Working Papers in Linguisites, Cambridge, MA:. - Merchant, J. (2019). Roots don't select, categorial heads do: lexical-selection of pps may vary by category. *The Linguistic Review*, 36:325–341. - Moskal, B. (2015). Limits on allomorphy: A casde-study in nominal suppletion. *Linguistic Inquiry*, 46:363–375. - Moskal, B. and Smith, P. (2016). Towards a theory without adjacency: Hyper-contextual VI-rules. *Morphology*, 26:295–312. - Mourelatos, A. (1978). Events, processes, and states. *Linguistics and Philosophy*, 2:415–34. - Müller, G. (2010). On Deriving CED Effects from the PIC. Linguistic Inquiry, 41(1):35–82. - Naughton, J. (2005). Czech: An Essential Grammar. Routledge, London. - Nevins, A. (2007). The representation of third person and its consequences for person-case effects. *Natural Language and Linguistic Theory*, 25:273–313. - Nevins, A. (2011). Multiple agree with clitics: person complementarity vs. omnivorous number. *Natural Language and Linguistic Theory*, 29:939–971. - Norris, M. (2014). A Theory of Nominal Concord. PhD thesis, UC Santa Cruz. - Oltra-Massuet, I. and Arregi, K. (2005). Stress-by-structure in Spanish. Linguistic Inquiry, 36:43–84. - Ott, D. (2011). Diminutive-formation in German: Spelling out the classifier analysis. *Journal of Comparative Germanic Linguistics*, 14:1–46. - Pancheva, R. (2022). Determiner vs. adjectival numerals and nominal number. In Stockall, L., Martí, L., Adger, D., Roy, I., and Ouwayda, S., editors, *For Hagit: A Celebration*, volume 47, pages 1–10. Queen Mary Occasional Papers in Linguistics. - Pancheva, R. (2023). Morphosyntactic variation in numerically-quantified noun phrases in Bulgarian. *Journal of Slavic Linguistics*, 31, FASL 30 issue:1–18. - Pelletier, J. (1975). Non-singular reference: Some preliminaries. *Philosophia*, 5:451–465. - Pesetsky, D. and Torrego, E. (2006). Probes, goals and syntactic categories. In Otsu, Y., editor, 7th Annual Tokyo Conference on Psycholinguistics, lingbuzz/000321. - Pesetsky, D. and Torrego, E. (2007). The syntax of valuation and the interpretation of features. In Karimi, S., Samllam, V., and Wilkins, W., editors, *Phrasal and Clausal Architecture*, pages 262–294. John Benjamins. - Picallo, C. (2008). Gender and number in Romance. Lingue e Linguaggio, 8:47-66. - Quine, W. V. O. (1960). Word and Object. MIT press, Cambridge, MA. - Rips, L. and Hespos, S. (2019). Concepts of objects and substances in language. *Psychonomic Bulletin & Review*, 26:1238–1256. - Ritter, E. (1991). Two functional categories in noun phrases: Evidence from Modern Hebrew. In Rothstein, S.,
editor, *Syntax and Semantics 25: Perspectives on Phrase Structure: Heads and Licensing*. Academic Press. - Roberts, I. (2019). Parameter Hierarchies and Universal Grammar. Oxford University Press, Oxford. - Roca, I. (1989). The organisation of grammatical gender. *Transactions of the Philological Society*, 87:1–32. - Rothstein, S. (2010). Counting and the mass/count distinction. *Journal of Semantics*, 27:343–397. - Rothstein, S. (2017). *Semantics for Counting and Measuring*. Cambridge University Press, Cambridge, UK. - Rothstein, S. (2021). Counting, plurality and portions. In Kiss, T., Pelletier, J., and Husić, H., editors, *Things and Stuff: The Semantics of the Mass-Count Distinction*, pages 55–80. Cambridge University Press, Cambridge, UK. - Sauerland, U. (2003). A new semantics for number. In Young, R. and Zhou, Y., editors, *Proceedings of Semantics and Linguistic Theory (SALT) 13*, pages 258–275. CSLI Publications. - Schwarzschild, R. (2006). The role of dimensions in the syntax of noun phrases. *Syntax*, 9:67–110. - Scontras, G. (2013). Accounting for counting: A unified semantics for measure terms and classifiers. In Snider, T., editor, *Semantics and Linguistic Theory (SALT) 23*, pages 549–569. CLC Publications. - Smith, P. (2021). *Morphology–Semantics Mismatches and the Nature of Grammatical Features*. John Benjamins. - Soja, N., Carey, S., and Spelke, E. (1991). Ontological categories guide young children's inductions of word meaning: Object terms and substance terms. *Cognition*, 38:179–211. - Steriopolo, O. and Wiltschko, M. (2010). Distributed gender hypothesis. In Zybatow, G., Szucsich, L., Junghanns, U., and Meyer, R., editors, *Formal Studies in Slavic Linguistics*, pages 155–172. Peter Lang, New York. - Svenonius, P. (1994). Dependent Nexus: Subordinate Predication Structures in English and the Scandinavian Languages. PhD thesis, University of California, Santa Cruz. - Svenonius, P. (2008). The position of adjectives and other phrasal modifiers in the decomposition of DP. In McNally, L. and Kennedy, C., editors, *Adjectives and Adverbs: Syntax, Semantics and Discourse*, Oxford Studies in Theoretical Linguistics, pages 16–42. Oxford University Press. - Tomioka, S. (2021). Japanese *-tati* and generalized associative plurals. In Cabredo Hofherr, P. and Doetjes, J., editors, *The Oxford Handbook of Grammatical Number*, pages 463–484. Oxford University Press, Oxford. - Toquero-Pérez, L. M. (2023). The syntax of individuating and measuring pseudo-partitives in Alasha Mongolian. *Journal of East Asian Linguistics*, 32:551–593. - Toquero-Pérez, L. M. (2024). *The Grammar of Individuation, Number and Measurement*. PhD thesis, University of Southern California. - Toquero-Pérez, L. M. (2024). Superlatives, partitives and apparent φ-feature mismatch in Spanish. In Armstrong, G., D'Alessandro, R., and Parafita Couto, M. C., editors, *RLLT 21*. Special issue of *Isogloss*, 10: 1-33. - Toquero-Pérez, L. M. (2025). Accommodating number neutrality in Alasha Mongolian: Markedness and semantic interpretation. *Journal of Semantics*. Online first. - van Geenhoven, V. (2005). Atelicity, pluractionality, and adverbial quantification. In Verkuyl, H., de Swart, H., and van Hout, A., editors, *Perspectives on Aspect, vol. 1. Studies in Theoretical Psycholinguistics*, pages 107–124. Springer. - Vendler, Z. (1967). *Linguistics in Philosophy*. Cornell University Press, Ithaca, NY. - Wellwood, A. (2019). *The Meaning of More*. Oxford University Press. - Wellwood, A., Hacquard, V., and Pancheva, R. (2012). Measuring and Comparing Individuals and Events. *Journal of Semantics*, 29:207–228. - Wiltschko, M. (2006). Why should diminutives count? In Broekhuis, H., Corver, N., Huybregts, R., Kleinhenz, U., and Koster, J., editors, *Organizing grammar. Studies in honor of Henk van Riemsdijk. Studies in Generative Grammar*, pages 669–679. Mouton de Gruyter, Berlin/New York. - Wiltschko, M. (2008). The syntax of non-inflectional plural marking. *Natural Language and Linguistic Theory*, 26:639–694. - Wiltschko, M. (2014). *The Universal Structure of Categories: Towards a Formal Typology*. Cambridge University Press, Cambridge. - Wiltschko, M. (2021). The syntax of number markers. In Cabredo Hofherr, P. and Doetjes, J., editors, *The Oxford Handbook of Grammatical Number*. Oxford University Press. - Wood, J. (2016). How roots do and don't constrain the interpretation of Voice. *Working Papers in Scandinavian Syntax*, 96:1–25. - Wood, J. (2023). *Icelandic Nominalizations and Allosemy*. Oxford University Press (to appear).